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Abstract

This thesis proposes a concept, VLSI microarchitecture and implementation of a network-

on-chip (NoC) supporting a flexible communication media share methodology. The con-

cept and methodology are based on a variable dynamic local identity tag (ID-tag) man-

agement technique, where different messages can be interleaved at flit-level on the same

communication channel. Each message is multiplexed and allocated to a local ID slot on

the shared channel. In order to implement the concept and methodology, a special packet

format will be introduced, where additional two control bit fields, i.e. an ID-tag field and

a flit-type field, are attached on every flit of the message in line with a data word. The re-

served ID slot number, to which the message is allocated, is attributed in the ID-tag field.

The flit-type field together with the ID-tag field is used to identify the messages and the

type of every message flit, and to control the behavior of certain components in the NoC

switch (NoC router) at runtime (during application execution time). The type of the flits

is classified into a header used to open the ID-tag reservation, a databody, or a tail flit that

is used to terminate the ID-tag reservation.

When entering a new communication channel, the ID-tag of a message is updated.

Each message is allocated to a new local ID slot and organized in such a way, that flits

belonging to the same message will have the same ID-tag on every communication chan-

nel. Therefore, an ID management unit is integrated in a switch multiplexor component

at every output port of the NoC router to organize the ID-tag reservation or the ID slot al-

location procedure. In order to guarantee a correct routing path configuration at runtime,

a routing engine component consisting of a routing state machine and a routing reserva-

tion table is implemented on each input port. The routing engine routes the interleaved

different messages based on their ID-tag.

The proposed concept and methodology have impacts on the implementation of ad-

vantageous and extensive features in the NoC router compared with the existing NoC

concepts presented in the literature. The basic advantageous application of the proposed

concept and methodology is the ability to implement a new wormhole switching method

called wormhole flit-level cut-through switching method to overcome the head-of-line block-

ing problems commonly occur when using traditional wormhole switching method. The

problem is solved by allowing the flits of the competing wormhole messages to be inter-

leaved at flit level in the same communication link without using virtual channels.

The proposed concept allows us to implement a new deadlock-free tree-based mul-
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ticast routing methodology with static or adaptive routing algorithm, where the routing

engines used to route the unicast and multicast messages are the same, resulting in a

low-area overhead multicast routing engine. The thesis introduces also a new theory for

deadlock-free multicast routing suitable for NoCs. The theory is formulated based on a new

simple and smart mechanism to handle multicast contentions called hold-release tagging

mechanism. The multicast deadlock configuration problem in the tree-based multicast

routing is solved without the use of virtual channels.

Beside (1) the new wormhole switching method and (2) the new deadlock-free mul-

ticast routing method mentioned before, the proposed concept allow us, (3) to develop a

new adaptive routing selection strategy (contention- and bandwidth-aware adaptive routing

selection strategy), (4) to develop a switched virtual circuit configuration method based

on the ID-division multiple access technique for implementing a runtime connection-

oriented guaranteed-bandwidth service, and (5) to combine the connectionless best-effort

and the connection-oriented guaranteed-bandwidth services in a single NoC router pro-

totype.

This doctoral thesis introduces in general a NoC router prototype called XHiNoC

(eXtendable Hierarchical Network-on Chip). The VLSI microarchitecture of the XHiNoC

routers is flexible and extendable, in which the generic components of the NoC router can

be simply replaced by extended components. If needed, a number of new signal paths

is added. Hence, a new NoC router prototype with the aforementioned extensive ser-

vices, such as adaptive routing service, multicast routing service and connection-oriented

guaranteed-bandwidth service can be designed from the basic VLSI microarchitecture of

the XHiNoC Router.



Kurzfassung

Diese Dissertation stellt ein Konzept für eine VLSI-Mikroarchitektur und Implementie-

rung eines On-Chip Netwerks vor, welches eine flexible Nutzung von Routing-Ressour-

cen unterstützt. Das Konzept und die Methodologie basieren auf einer variablen lokalen

Identität (ID-Tag) von Datenpaketen auf den einzelnen Segmenten des Routing-Netz-

werks, wodurch eine gleichzeitige gefaltete Übertragung (Interleaving) mehrerer Daten-

pakete auf einem Datensegment ermöglicht wird. Hierfür wurde ein spezielles Format

für die Flits eines Datenpakets entworfen, welches als zusätzliche Steuerungsinforma-

tionen für den Datenfluss Informationen über den Pakettyp und die lokale ID (ID-Tag)

des Pakets auf dem aktuell betrachteten Routing-Segment enthält. Mit diesen Zusatzin-

formationen wird das Verhalten der On-Chip Router des Network-on-Chip (NoC) lokal

gesteuert. Datenpakete bestehen aus Datenheader, Payload und einem Deskriptor für

das Ende des Pakets.

Wenn ein Router einen Datenheader empfängt, trifft die aus einer kombinierten Rou-

ting-Zustandsmaschine und einer Routingtabelle bestehende Routing-Engine am Ein-

gang des Routers eine Entscheidung für die Richtung der Weiterleitung des Pakets und

ein eingebauter ID-Manager ordnet dem Paket eine freie ID auf dem ausgehenden Rou-

ting-Segment zu. Alle nachfolgenden Flits des Datenpakets werden über deren ID auf

dem Dateneingangssegment erkannt, automatisch auf dieses Ausgangs-Routingsegment

geschaltet (Switching) und mit derselben lokalen ID versehen, die auch dem Header des

Pakets zugeordnet wurde. Passiert ein Paketende einen Router, so wird die für das Paket

verwendete lokale ID wieder freigegeben. Die ID-Verwaltung und -Vergabe wird mit

Hilfe eines Steuerungsmoduls realisiert, das in den Multiplexern des On-Chip Routers

integriert ist.

Im Vergleich zu Konzepten der anderer bekannter On-Chip Netzwerke, haben das

vorgeschlagene Konzept und die implementierte Methodologie Vorteile im Hinblick auf

eine effiziente Implementierung der On-Chip-Router. Basierend auf dem vorgeschlage-

nen Konzept können Wormhole-Routingverfahren mit wesentlicher Reduktion der hi-

erbei üblichen Warteschlangen-Blockierungsprobleme implementiert werden. Flits ver-

schiedener Datenpakete können auf dem gleichen Übertragungskanal gemischt werden,

wofür keine expliziten virtuellen Datenkanäle benötigt werden, was zu einer erheblichen

Reduktion der Größe von Datenpuffern führt.

Das vorgeschlagene Konzept ermöglicht esweiterhin, eine blockierungsfreie Multicast-
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Routingsmethode mit einem statischen oder adaptiven Routingsalgorithmus zu imple-

mentieren. In der vorliegen Dissertationsschrift wird auch eine neue blockierungsfreie

Multicastroutingstheorie vorgestellt, die sich für On-Chip Netzwerke eignet und auf dem

beschriebenen Grundkonzept basiert. Die hiervon abgeleitete Methodik ist als sogenan-

nter “Hold-Release-Tagging-Mechanismus” implementiert, und löst das Problem einer

möglichen gleichzeitigen Konkurrenz vonDatenwörtern um eine bestimmte Ausgangsres-

source einesNetzwerkrouters. Letzteres stellt insbesondere beiMulticast-Datenkommuni-

kation ein schwerwiegendes Problem dar und wird hier ohne Verwendung virtueller

Kanäle gelöst.

Neben (1) der neuenWormhole-Paketvermittlungsmethode und (2) dem neuenMulti-

castroutingverfahren, wird unter Verwendung des vorgeschlagenen Konzepts ermöglicht,

(3) eine lastabhängige Bandbreitensteuerung lokal in denRoutern vorzunehmen, (4) virtu-

elle Leitungsverbindungen ohneNotwendigkeit einer zentralen Steuereinheit für die Bere-

itstellung einer verbindungsorientierten Datenübertragung (Quality of Service) bereitzu-

stellen, und (5) kombinierte verbindungslose (Datenpakete) und verbindungsorientierte

(Streaming) Datenübertragung in einem on-Chip Router zu implementieren.

In dieser Dissertation wird die NoC-Prototypenarchitektur XHiNoC (eXtendable Hi-

erarchical Network-on Chip) vorgestellt. Die VLSI-Mikroarchitektur des XHiNoC-Rou-

ters ist flexibel und erweiterbar, wobei die generische Komponenten des NoC Routers

einfach mit anderen erweiterten Komponenten ersetzt werden können. Daher können

problemlos neue NoC-Routerprototypen generiert werden, die zusätzliche Dienste, wie

die oben genannten Dienste (adaptive Routingsverfahren, Multicast-Routingsverfahren

oder verbindungsorientierte Datenübertragung mit Bandbreitengarantie) bereitstellen.

Basierend auf der XHiNoC-Architektur können in kürzester Zeit bedarfsangepasste Rou-

ter erstellt werden, die nur die benötigten Dienste bei minimiertem Overhead abbilden.

Da die ganze Architektur auf einen globalen Controller verzichtet, ist sie beliebig skalier-

bar. Aufgrund der verwendeten Steuerung der Dateninjektion werden die im Netzwerk

injizierten Datenmengen der verfügbaren Übertragungskapazität angepasst, womit eine

wesentliche Reduktion der Datenpuffer und routerinternen Steuerungsmechanismen ein-

hergeht.
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1.1 Background and Motivations

According to the International Technology Roadmap for Semiconductors (ITRS) [105],

the transistor feature size will be smaller in submicron (nanometer) scale and integrated

circuits operate below one volt. Since the feature size of newer technology is smaller,

the integrated circuits using this new technology can then be clocked faster. The smaller

transistor feature size also enables the integration of more tansistors on a single die. The

challenges related to the progress of the advanced technology are design concepts and

design methodologies that can make use of such new technology. The most attractive

thing of the new and smaller technology is the reduced cost. As the technology evolves

toward the production of larger and larger circuit functions on a single die and unit cost

falls as the number of component per circuit rises, then the cost advantage will continue

to increase [160].

System-on-chip (SoC) design methodology is one of the potential solutions for system

level design. The SoC design method is based on design reuse method which is accept-

able in industry and compatible with industrial standard computer-aided design (CAD)

tools. As the feature size of a CMOS technology decreases, the working frequency of the

SoC system can be increased in order to improve the system performance. However, this

popular technique has run out of steam, due to excessive power consumption, heat dissi-

pation and electro-migration reliability issues [54]. Hence, solving a very complex com-

putation by participating more computing elements will be a preferable solution. SoC

architecture paradigm will potentially move from single processing element to multiple

1
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processing elements [31], which is called as a multiprocessor SoC (MPSoC).

Traditionally, a SoC or an MPSoC system interconnects intellectual properties (IP)

components by using a bus-based interconnect system. When the number of participating

components is more than ten, then the bus system will have a performance bottleneck

problem [106]. In order to solve the performance bottleneck problem, a fully crossbar in-

terconnect can be used. However, this approach will implicate a wiring complexity in the

circuit, in which wires could be more dominant than the logic parts, especially when

the number of the interconnected components is very high. Another problem in the

fully crossbar interconnect is the effect of electromagnetic interference that can disturb

the interconnect functionality. A point-to-point interconnect (dedicated wires) is also another

alternative solution to the performance bottleneck problem and to the wiring complex-

ity problem. However, this approach is not flexible. Instead of connecting the top-level

components by routing the dedicated wires, an on-chip interconnection network can be im-

plemented and interconnect the interacting components by routing packets through the

network [59].

Since interconnect technology affects more profoundly on chip performance and power

usage, improving on-chip communication technology has become increasingly important

to researchers and processor manufacturers [78]. A high-throughput communication in-

frastructure is required to meet the bandwidth requirement of each data communication

flows generated due to interacting processors in theMPSoC systems. This issue can be po-

tentially handled by a communication infrastructure based on the network-on-chip (NoC),

which has better scalability to provide sufficient communication bandwidth.

On-chip network infrastructure also enables advanced intellectual properties (IP) com-

munication concepts for MPSoC. In embeddedMPSoC systems, NoCs can provide a flex-

ible communication infrastructure, in which several components such as microprocessor

cores, MCU, DSP, GPU, memories and other intellectual property (IP) components can

be interconnected by using reusable NoC routers via general modular interfaces. The

MPSoC systems can also be reconfigured for a certain embedded computing application

and can be customized to improve the communication performance in the application.

Hence, the NoC-based systems combine performance with design modularity [176]. The

innovation of a flexible NoC communication infrastructure will enable accordingly the IP

vendors to sell not only their IP components but also a system architecture [54].

The main component of the NoC system is an on-chip router (switch). Research in the

field of off-chip interconnection network is not a new activity. The off-chip interconnec-

tion network has been a mature technology. However, there are some issues that should

be addressed regarding the adoption of the “off-chip network” concepts into the “on-chip

network” implementations. We are sure that the new innovations related to switching

method, adaptive routing algorithm, network flow control and buffering scheme suitable

for NoCs are still required. Until now, there is no standard for the NoC architecture sim-

ilar to that of the internet world. This thesis is motivated to provide a new switching

method, new adaptive routing strategies and a new deadlock-free theory and methodol-
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ogy for tree-based multicast routing and its VLSI implementation, which are in any case

different from the existing methods mentioned in the literature and suitable for NoCs.

1.2 Research Scope and Objectives

The research scope of this thesis are the concept of VLSI architecture and implementation

of on-chip routers with advantageous features and characteristics to develop networks-

on-chip for multiprocessor systems. Since the main focus of the research is the NoC

routers design concept, then this thesis will discuss some issues and aspects of the NoC

router architecture and its supporting modular components. Therefore some topics such

as switching method, routing algorithm, network flow control, and the internal NoC

router pipeline microarchitecture including its pipeline control are the main scopes of

this thesis.

The research experiments on the NoC-based multiprocessor systems equipped with a

programming model, and application programming interface (API) of the multiprocessor

system with distributed memory architecture are part of the research interests conducted

in our institute. However, the designs of NoC-based multiprocessor systems, on-Chip

Network Interface (OCNI), and parallel programming models are beyond the scope of

this thesis.

The general objective of this doctoral thesis is to present a design concept and generic

architecture of a NoC prototype with specific features supporting specific services. The

specific objectives of this thesis are intended to improve the existing methodology, design

concepts and characteristics of NoC routers that have been developed so far in the NoC

research area. The specific objectives are:

• to present a newwormhole switching method [223] [229], [237] and to show theoret-

ically the advantageous characteristics compared to traditional wormhole switch-

ing, in which the head-of-line-blocking problem is solved without using virtual

channels,

• to present a new theory for deadlock-free multicast routing algorithm [234] and to

show the advantageous characteristics and VLSI implementations [224], [227], [232]

compared to existing deadlock-free multicast routing methods, in which the multi-

cast dependency (contention) problem is solved without the use of virtual channels,

• to present a new approach to design runtime adaptive routing selection strategies

based on contention and bandwidth information or combination of both informa-

tion, and to show their advantageous performance characteristics compared to other

adaptive routing selection strategies presented in the literatures [236],

• to present a new and more flexible Switched-Virtual Circuit (SVC) configuration

method to design a NoC router with connection-oriented guaranteed-bandwidth
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service and to show the advantageous VLSI architecture and methodology to com-

bine the guaranteed-throughput service with the connectionless best-effort service

compared to existing methodologies presented so far in the NoC research area [221],

and

• to introduce a flexible VLSI microarchitecture of a NoC communication infrastruc-

ture that can flexibly support the aforementioned novel theory and methods.

1.3 Thesis Outline

The remaining chapters are generally divided into three chapter groups, i.e. the introduc-

tory chapter represented by Chap. 2, the contribution chapters describing the contribu-

tions of this thesis (Chap. 3–Chap. 7), and the concluding chapter represented by Chap. 8.

The brief descriptions of each chapter are shown in the following.

• Chap. 2. This chapter describes the general theory and basic knowledge about in-

terconnection networks such as network topologies, generic switch architecture,

switchingmethods (store-and-forward, virtual cut-through, wormhole, circuit switch-

ing, etc.) and routing algorithms (deterministic, adaptive). Research challenges on

the design of on-chip interconnection networks as well as some research areas re-

lated to NoCs such as multicore systems, parallel programming models and NoC

testing methods are also briefly presented in this chapter.

• Chap. 3. This chapter describes formally the generic architecture and components

of a router prototype called XHiNoC, which is developed as a part of this doctoral

research. The XHiNoC router prototype consists of generic components and is ex-

tendable to include some additional services with small modifications in the generic

components. This chapter also presents the main concept of the XHiNoC being flex-

ible in sharing communication media in the NoC. The concept realized is based on

a tag-division multiple-access technique, in which the multiplexed messages are as-

signed to a local identity (ID) slot. When entering a new communication channel,

the local ID slot allocation or the ID-tag assignment to the message is update dy-

namically at runtime. The ID-tag assignment is organized in such a way that each

individual message can be identified properly, and each flit (flow control digit) of the

message can be routed to its routing paths correctly. The features and characteris-

tics of the XHiNoC, which are achieved due to the implementation of the proposed

concept, are described. The main issue related to the local ID slot scalability in

guaranteeing service availability for all possible considered traffics is also formally

described in this chapter.

• Chap. 4. This chapter proposes a new wormhole switching method called “worm-

hole cut-through switching method”, in which flits of different wormhole messages
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can be interleaved among each other at flit-level in the same link. The realization

of the new wormhole switching is based on the main XHiNoC concept described

previously in Chap. 3. The performance characteristics of the proposed switching

method are evaluated under various commonly used data distribution scenarios.

This chapter also shows how the head-of-line blocking problem is solved during

saturating and non-saturating condition, and compares it visually with the virtual-

channel-based solution. Interesting performance behaviors of the new switching

method are presented during non-saturating and saturating conditions. In the non-

saturating condition, end-to-end average data rate of each individual communica-

tion can be kept constant following the expected average data rate despite the in-

crease in the number of workload. When the expected data rate is increased such

that the NoC is saturated, the actual measured injection will follow the average ac-

tual acceptance rate of each considered traffic that is reduced to a steady-state point

lower than the expected data rate. Hence, because of a link-level data overflow con-

trol, all message flits injected to the source nodes can be accepted without any loss

at the destination nodes.

• Chap. 5. The extended version of the XHiNoC router supporting unicast and mul-

ticast services is presented in this chapter. This chapter introduces a new theory

for deadlock-free multicast routing, as well as the VLSI microarchitecture of the

router implementing the new deadlock-free multicast routing method. State-of-the-

art multicast routing methods that have been used in high performance comput-

ing arena and in NoC research area is also presented in this chapter. By using the

concept presented previously in Chap. 3, combined with a “hold-release multicast

tagging mechanism”, oblivious multicast dependency in each router that can lead

to a permanent deadlock configuration can be solved effectively. Routing algorithm

used to route multicast messages is also used for unicast messages resulting in an

efficient routing machine implementation. Performance comparisons of the static

and adaptive tree-based multicast routing are evaluated in this chapter. This chap-

ter also presents an output selection function to perform efficient spanning trees of

the tree-based multicast routing method when using an adaptive routing algorithm.

• Chap. 6. This chapter presents new selection strategy for runtime adaptive rout-

ing based on bandwidth space reservations and contention information between

alternative output directions. State-of-the-art runtime adaptive routing selection

strategies is described in this chapter. Five output selection strategies are intro-

duced, i.e. bandwidth-aware (BWA), contention-aware, congestion-aware, as well

as combinations of two strategies, i.e. contention- and bandwidth-aware (CBWA),

and contention- and congestion-aware (CCA) output selection functions. All output

selection strategies are implemented by using the wormhole cut-through switching

method and themedia share concept that have been presented previously in Chap. 4

and Chap. 3, respectively. Performance evaluation and logic synthesis results from

the NoC router prototypes using the adaptive routing selection strategies are also
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presented in this chapter.

• Chap. 7. The extended version of the XHiNoC router supporting runtime connection-

oriented guaranteed-bandwidth service for unicast and multicast messages is pre-

sented in this chapter. This chapter introduces an efficient concept for communi-

cation media sharing to configure switched virtual circuits. This chapter presents

the State-of-the-art switched virtual circuit configuration methods or multiple ac-

cess techniques that have been implemented so far for NoCs, including the advan-

tages of our proposed local ID-basedmultiplexing techniques compared to the other

techniques. An XHiNoC router prototype combining connectionless best-effort and

connection-oriented guaranteed-throughput communication protocols is also intro-

duced in this chapter.

• Chap. 8. The new contributions of this thesis are summarized in this chapter. The

directions for future works are also briefly described in this chapter.
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Networks-on-Chips (NoC) has been a bridge concept of a new design paradigm from

Systems-on-Chip (SoCs) into Multiprocessor System-on-Chip (MPSoC). In the new com-

puter era, where the design perspective to increase computing performance moves from

increasing working frequency of a single core processor system to increasing the num-

ber of working processors in a multicore processor system, the NoC will become a pre-

ferred communication infrastructure, when the number of cores will be more than ten

cores. A sophisticated communication structure is needed for the inter-processor data

exchanges. Rather than using a traditional interconnect infrastructure such as a bus sys-

tem (Fig. 2.1(a)), fully point-to-point (crossbar) (Fig. 2.1(b)) or dedicated point-to-point

interconnect systems (Fig. 2.1(c)), a concept of shared segmented communication infras-

tructures is proposed to support application-scalability and high-performance inter-task

communication.

The main problem using the bus interconnect system is the performance bottleneck

due to its bandwidth limitation. The fully crossbar interconnect system leads to high

electromagnetic interference and interconnect capacitance problems due to its metal wire

domination. The main problem using the dedicated point-to-point interconnect system

is the low flexibility. The bandwidth limitation in the bus system can be solved by us-

ing a hierarchical (segmented) bus system, in which a bus system is interconnected to

other bus systems via a bridge component as presented in Fig. 2.1(d). However, since

distributed bus arbitration corresponds to the aggregate actions of multiple arbitration

units, computing optimal overall settings will be very complex and time consuming [54].

The NoC is the possible solution for such problems and requirements. Fig. 2.1(e)

and Fig. 2.1(f) show examples of NoC topology architecture in irregular and regular

structure, respectively. The NoC consists of several switches or routers used to route a

packet/message sent by one IP component to another. Therefore, the main philosophy

of the NoC is the development of communication infrastructure that enable us to route

the packets instead of the wires [59]. The use of NoCs can be classified into two main

categories, i.e. in embedded SoC applications domain commonly called Multiprocessor

System-on-Chip (MPSoC) and in general-purpose microcomputer systems domain com-

monly called Chip-Level Multiprocessor (CMP) systems.

A SoC design approach, which is mainly used to develop application specific to em-

bedded applications, integrates more than one Intellectual Property (IP) components into

a single chip. Since the amount of processing element (PE) included in the multicore
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Fig. 2.1: SoC Interconnect Communication Infrastructure.

embedded SoC is more than one, then the SoC is generally called aMultiprocessor System-

on-Chip (MPSoC). The PEs in the MPSoC send and receive messages to and from other

PEs for interacting computational processes in order to complete parallel tasks in the em-

bedded applications. The main aspect that should be taken into account in the MPSoC

systems is the lower power design. The power supply in the embedded applications,

which is commonly used in electronic-handhelds and portable electronic appliances, is

limited by the battery life. Therefore, the power constraint, which is also directly related

to the logic area constraint, is the main issue to design the NoC-based MPSoC systems.

Fig. 2.2 shows a typical MPSoC system which consists of 16 cores in a 2D 4 × 4 mesh

network architecture. The core can be a shared memory, a digital signal processor (DSP),

a bus-based microprocessor system (such as ARM, MIPS, or RISC processor system), an

ASIC component, FPGA-based configurable block, or any other core types. Each core is

connected to one mesh Router (R) via an On-Chip Network Interface (OCNI). The OCNI is

the main component used to assemble a data into a packet before the data is sent from

one core to another core through the network node, which is then disassembled back to

the original data before being sent to the core.

An example of a NoC-based (networked) chip-level multiprocessor (CMP) system is pre-

sented in Fig. 2.3. The chip consists of 30 tiles interconnected in a 2D 6×5 mesh topology.

Each tile consists of a microprocessor system, an on-chip network interface (OCNI) and a

router (R). The microprocessor system can comprise of one or more CPU (central process-

ing unit) blocks, a local memory block, a global (shared) memory, a memory controller

(MCtrl), an IO interface and other components. The CMP system is typically a homo-

geneous (symmetric) multiprocessor system. Although in some cases, special-purpose
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Fig. 2.2: Embedded multiprocessor system-on-chip (MPSoC) on mesh-connected NoC.

ASIC cores can be implemented on certain nodes in the CMP system. This characteris-

tic is achieved due to the application domain of the CMP systems for general purpose

microcomputer use, where every user’s computer program will be compiled for a single

core type target to simplify the program compilation and debugging steps made by the

general computer users.

So far, on-chip communication infrastructures have been used in some the MPSoC

and CMP applications. Commercial products such as game consoles are one of many

potential NoC-based multiprocessor applications. IBM, Sony and Toshiba have jointly

developed a Cell Broadband Engine Processor known as Cell Processor [116] dedicated for

Playstation 3 Game Console. The cell processor consists of a 64-bit power processor ele-

ment (PPE), eight specialized processors called synergistic processor elements (SPEs) [89],

a high-speed memory controller and a high-bandwidth bus interface. All components are

integrated on-chip and interconnected in a ring topology architecture. The Xbox 360 game

console [10] has also used a CMP system consisting of 3 CPU cores, memory, I/O compo-

nents and graphics processing unit (GPU). Since the number of PEs is relatively small, the

components are interconnected through node crossbar/queuing, not a NoC communica-

tion infrastructure. However, this node crossbar/queuing can be interpreted as a single

crossbar switch that is commonly used in a NoC router.

In academia, some works have investigated the potential applications of the NoC-

based multiprocessor systems. For instance, the work in [74] has develop an adaptive

and predictive NoC architecture based on FPGA for vision systems dedicated to image

analysis. The work in [114] integrates ten processing elements for task-level parallelism

with single-instruction multiple-data (SIMD) programming model. The memory-centric

NOC-based processor system is used to compute the key-point localization stage of object
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Fig. 2.3: Chip-Level multiprocessor (CMP) system on mesh-connected NoC.

recognition. The work in [115] shows a NoC-based parallel processor with bio-inspired

visual attention engine. The NoC topology is custom-made by using two 7 × 7 crossbar

switches and one 6 × 6 crossbar switch.

Independent from the targeted application domains mentioned above, the NoC can

be implemented using different network topologies, data switching method and inter-

switch data synchronization techniques. Table 2.1 represents several NoC prototypes de-

veloped in academic world and industries. The table presents some existing NoC proto-

types that have been published so far with different communication data synchronization

(synchronous, asynchronous or mesochronous), network topologies and switching meth-

ods. Most of the NoC proposals presented in the table uses the mesh topology and the

synchronous communication with packet switching method.

2.1 Network-on-Chip Topology Architecture

In this section, some network topologies that have been used by some existing NoC archi-

tectures are presented. The selection of the network topologies is based on some reasons

and backgrounds regarding the fulfilment of the bandwidth requirements for specific ap-

plications and parallel computing applications as well. In general, on-chip network topol-
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Tab. 2.1: Networks on Chip Prototypes.

NoC Prototypes NoC Topo. Synch. Switch.

SPIN [90] Fat-tree Async. VCT.

MESCAL [196] Custom Async. Pck.

MicroNet [212] Custom Sync. Pck.

CLICHÉ [125] Mesh Sync. Pck.

Proteo [191] Mesh Sync. Pck.

RAW [203] Mesh Sync. Worm.

Octagon [111] Octagon Sync. Circ./Pck.

Chain [16] Chain Async. Pck.

ECLIPSE [72] Superswitch Sync. Pck.

SoCBUS [211] Mesh Sync. Pck.

Æthereal [187] Custom Sync. Circ.

Nostrum [157] Mesh Sync. Pck.

Hermes [161] Mesh Sync. Pck.

Arteris [149] Custom Sync. Pck.

HiNoC [194], [97] Hi. Mesh ASync. Circ.

Xpipes [30] Custom Mesoc. Worm./Pck.

ASPIDA [8] Chain Async. Pck.

IMEC NoC [25] Irregular Sync. VCT.

ANoC [28] Mesh Async. Pck.

DSPIN [181] Mesh Mesoc. Circ.

PNoC [96] Mesh Sync. Circ.

ASNoC [215] Hi. Custom Sync. Pck.

ALPIN NoC [27] Mesh Async. Pck.

KAIST NoC [129] Hi. Star Sync. Pck

STNoC [177] Custom Sync. Pck.

INoC [165], [166] Irregular Sync. Pck.

MANGO [36] Mesh Async. Circ.

IBM Cell EIB [3] Ring-Star Sync. Pck.

Tile64 [210] Mesh Sync. Worm.

Ambric MPPA [41] Mesh Sync. Pck.

TRIPS [87] Mesh Sync. Worm.

Intel Teraflops [98] Mesh Mesoc. Worm.

SCC NoC [103] 3-ary 2-cube Sync. Worm.

EVC-NoC [123] Mesh Sync. Pck.

XHiNoC [232], [229] Mesh Sync. WormCT
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(a) Mesh (b) Torus (c) 4-side Crossbar

Fig. 2.4: Mesh-like networks.

ogy can be divided into regular network architectures and irregular or custom network

architectures.

2.1.1 Mesh-Like Network Topology

The most commonly used on-chip network topology as presented in the Table 2.1 is a

mesh-based network. Compared with other on-chip network topologies, the mesh topol-

ogy can achieve better application scalability. The implementation of routing functions

in mesh topology is also simpler and can be characterized well. In the on-chip inter-

connection networks for on-chip multiprocessor systems, the mesh architecture is widely

used and preferable. An example on-chip multiprocessor system that uses mesh topology

is Intel-Teraflops system [205]. The 80 homogeneous computing elements are intercon-

nected in through NoC routers in the 2D mesh 8 × 10 network topology.

Fig. 2.4(a) presents three different kinds of network architectures based on mesh struc-

ture. The mesh node consists of five ports, i.e. East, North, West, South and Local ports.

The Local port of each mesh node is connected directly to one processing element. The

other ports are connected with other ports of adjacent routers. Each node in the mesh

network can be addressed well and simple. Therefore, routing algorithm for the mesh

network architecture can be kept simple and well designed. The total bandwidths pro-

vided by the mesh communication links are scalable. For a 2Dmesh with N ×M size and

the implementation of internode connection is with unidirectional full-duplex channels,

then there will be Lmesh = 2N(M − 1) + 2M(N − 1) physical communication channels

available in the mesh network connecting N × M computing resources. The minimum

hop to the nearest neighbor in the mesh is Hmin
mesh = 2 hops, while the maximum hop to

the longest neighbor is Hmax
mesh = N + M − 1.

Fig. 2.4(b) shows a mesh-like network architecture called torus architecture. The main

difference between the mesh and torus topology is the additional communication links

connecting a nodes at the edge of the network with another node at the opposite edge in

the same vertical or horizontal paths as presented in the figure. Designing a deadlock-free

routing algorithm for the torus network will be more complex (especially in the network
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(a) Binary-Tree (b) Quad-Tree (c) Fat-Tree

Fig. 2.5: Tree-based networks.

nodes at the network edges) because of these additional communication links. For a 2D

N × M torus network where the communication channels is implemented with unidi-

rectional full-duplex links, then there will be Ltorus = 4NM communication channels

available in the torus network.

Anothermesh-like network architecture is a four-side mesh-based crossbar network topol-

ogy as presented in Fig. 2.4(c). The number of available communication links accord-

ing to the N × M network size is similar to similar to the mesh-based network, i.e.

L4side−xbar = 2N(M − 1) + 2M(N − 1). However, the number of computing elements

that can be connected to the four-side crossbar network is 2(N + M). Hence, the ratio

between communication resources over computing resources of the four-side crossbar

network is higher than that of the mesh-based network.

2.1.2 Tree-based Network Topology

Tree-based NoC topologies are presented in Fig. 2.5. In Fig. 2.5(a), it shows a binary-tree

network topology. In the binary-tree network, every router is connected to one up-level

router and two down-level routers. At the end of the binary-tree network, two computing

elements can be connected to each router. Packet routing in the binary-tree network is

very simple. A direct routing method made directly reading the binary address attached

in the packet header can be used to route packets from a source to a destination node.

Fig. 2.5(b) shows a quad-tree network topology. In the quad-tree network, every

router is connected to one up-level router and four down-level routers. At the end of

the quad-tree network, four computing elements can be connected to each router. Similar

to the binary-tree network, packet routing in the quad-tree network can be simply im-

plemented by using the direct routing method. Routing in the binary-tree and quad-tree

network is static. The minimum hop to the nearest neighbor in the binary-tree and quad-

tree network is equal, i.e. Hmin
bin−tree = Hmin

quad−tree = 1 hop, while the maximum hop to the

longest neighbor depends on the number of switch nodes in the tree network. However,

compared to the binary-tree network, the quad-tree network has lower averagemaximum

network hop.
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(a) Irregular Network (b) Ring 12 (c) Spidergon 12

Fig. 2.6: Irregular, Ring and Spidergon networks.

Fig. 2.5(c) exhibits a fat-tree network topology. In the fat-tree network, the topology

can be similar to the binary-tree network, where at the end of the binary-tree network, two

computing resources can be connected to each router. The difference is that the number

of communication links connected to the upper-level router is increased. Hence, the link

bandwidth capacity of the fat-tree router is higher than the binary-tree and quad-tree

NoC router. In the fat-tree network, it is possible to apply adaptive routing algorithm.

2.1.3 Irregular or Custom Network Topology

Irregular or custom network topology is used to design a network architecture in order to

optimize the use of communication resources and to save power consumption. By using

the irregular custom network topology, the number of switches used to design a network

architecture can be optimized. Accordingly, power dissipation and data communication

energy in the optimal number of switches can be reduced. The irregular customized net-

works are also suitable for embedded MPSoC applications, in which the IP components

used in the MPSoC devices have different sizes. Fig. 2.6(a) presents a network in irreg-

ular topology consisting of four switches. The network switches connect 12 computing

resources.

The main drawback of the irregular/custom network topology is the complexity of

the routing algorithm. Each routing algorithm of the irregular router must be customized

to avoid possible cyclic dependency. In small-size irregular networks, the irregular rout-

ing algorithm is relatively not to complex. But, in very large-size irregular networks,

the complexity to develop routing algorithms in every irregular network switch will be

higher.

2.1.4 Other Network Topologies

Other commonly used network topology architectures are ring, octagon and spidergon

topology. Fig. 2.6(b) shows a ring network architecture, which consists of 12 switches,

where each switch is connected with one computing resource. The IBM-cell processor
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system [116] for instance, uses ring topology to interconnect 8 synergistic processing el-

ements together with a single PowerPC microprocessor. Fig. 2.6(c) exhibits a spidergon

network architecture, which also consists of 12 network switches, in which each switch is

also connected with one computing resource.

The main difference between the ring and the spidergon topology is an additional

switch attached in the center of the spidergon network. The additional center switch is

used to cut the network hop latency in the ring topology. As presented in Fig. 2.6(b), the

largest network hop in the ring network depends on the number of N switches intercon-

nected in the ring architecture, i.e. Hmax
ring = N

2
+ 1 when N is even, or Hmax

ring = N+1
2

when

N is odd. The additional central switch acts as an intermediate switch in the spidergon

network which reduces the maximum number of network hop delay to Hmax
spidergon = 3

hops. Both the ring and the spidergon networks has equal minimal hop latency, i.e

Hmin
spidergon = Hmin

ring = 2.

2.1.5 Hybrid and Hierarchical Network Topology

The other interesting network topology architecture is a hybrid hierarchical network. The

hybrid hierarchical network can be a network that combines two or more network topol-

ogy in a hierarchical interconnect architecture. For example in Fig. 2.7(a), it presents a

regular mesh network, where each mesh node is connected with a lower-level hierarchi-

cal network. The lower-level network can a tree-based network, irregular network or a

bus-based interconnect system. The hybrid hierarchical network is suitable for a parallel

computing system having local computing domains. It will take on the advantages of the

scalable bandwidth of the regular mesh topology and the low latency characteristics (low

average hop) of the tree-based or irregular networks.

The hybrid hierarchical network presented in the Fig. 2.7(a) needs a 3D (x, , y, z) node

addressing. The 2D (x, y) node addressing is used for the mesh network nodes and the

(z) is used to address the lower-hierarchical network nodes. NoCs that uses a hierar-

chical star (H-Star) topology architecture is presented for example in [129]. The H-Star

topology consists of four clusters, where each cluster consists of four NoC routers and is

connected to a central router. Therefore, the central router has four IO ports, while each

cluster router has five IO ports. A mesh-of-trees presented in [17], is also an alternative

interconnection networks for single-chip parallelism.

Fig. 2.7(b) presents also another interesting network topology called a mesh butterfly

network. Each mesh node connected to four local processing elements (PEs). Originally,

this architecture is a hybrid hierarchical network, where each mesh node is connected to

a lower-level network interconnecting four PEs. However, instead of interconnecting the

four PEs to the lower-hierarchical network node, they are directly connected to the mesh

node. This implementation is made to avoid the low bandwidth capacity of the link

connecting the mesh node and the lower-hierarchical node, and to use accordingly the

maximum bandwidth capacity of the mesh switch. Like the network topology presented
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(a) 2D Hybrid Hierarchy (b) Mesh Butterfly

Fig. 2.7: Mesh butterfly and hybrid hierarchical networks.

in Fig. 2.7(a), this network also requires the 3D network node addressing.

2.2 Generic On-Chip Switch Architecture

The microarchitecture of the switch or router for a certain network-on-chip is unique, de-

pending on the implemented switching method, the implemented quality of service, the

routing algorithm used and the utilization of an inter-switch communication synchronic-

ity. Fig. 2.8 shows the typical router architecture, which consists of five input-output (I/O)

ports, where one I/O port is connected to a local computing resource via network inter-

face. In general, a switch (router) consists of five main components that are explained in

the following:

1. First-In First-Out (FIFO) Buffer. This component is used to buffer incoming and out-

going data in the router. Some on-chip routers implement FIFO buffers either in

input ports or in output ports to cut data buffering cost. In a switch having vir-

tual channels, the FIFO buffers are replicated in the inputs and/or the output ports

of the switch. Since adding buffers can significantly increase logic area overhead

and power dissipation, the trend in switch architecture design is to move into the

design of the switch without virtual channels, except for the use to provide guaran-

teed packet delivery service.

2. Routing Engine. The Routing Engine is utilized to compute routing decision of the

incoming packets. In general, there are two different implementation of the routing

engine circuit. The first one is Routing State Machine, and the other one is Table-

based Routing. The combination of both Routing State Machine and Table-based

Routing can also be used as explained later in Chap. 3.
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Fig. 2.8: Typical router structure.

3. Arbiter. The Arbiter unit is utilized to select a packet from a certain incoming port

to access its requested outgoing port. The arbiter plays a role as a referee to control

contentions between some packets requiring the same outgoing port in the router.

There are some existing methods to implement the arbiter such as first-come first-

serve, round-robin, priority-based, contention-aware and flit-by-flit rotating arbi-

tration as presented later in Chap. 3.

4. Crossbar Multiplexor-Demultiplexor. These components form crossbar interconnects

between input and output ports of the router. In some cases, the demultiplexor units

can be neglected to optimize the crossbar area. All possible input data lines will be

connected to the input ports of the crossbar multiplexors, and then the output data

from the input data lines is controlled by the arbiter unit.

5. Link Controller. The link controller unit is used to control data transmission between

input and output ports of adjacent routers. Data control is used to avoid data over-

flows and incorrect data replications. Some existing control mechanisms such as

credit-based method can be implemented in this unit. Data synchronization inter-

faces are also implemented in this unit to synchronize correct data transmission

from one switch to another one. Some data synchronization methods that can be im-

plemented in the NoC are e.g. source-synchronous, mesochronous, asynchronous

queue-based, pipelined repeater-based and the most well-known handshake mech-

anism.
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Fig. 2.9: Store-and-Forward Switching.

2.3 Switching Methodology

Nowadays, there have been many innovations to switch data in interconnection net-

works. The selection of switching methodology will determine the architecture of an on-

chip router, andmay also determine service that can be provided by the network. Among

many existing methods, basic switching methods such as store-and-forward, wormhole,

virtual cut-through and circuit switching method are described in the following subsec-

tions. There are still a few hybrid methods for data switching that have been proposed in

the interconnection network community such as pipelined circuit switching (PCS) [7], [77]

that combines the characteristics of the wormhole and circuit switching method, and

buffered wormhole switching (BWS) which is a variant of the wormhole switching that

combines the store-and-forward packet switching characteristics. The BWS was firstly

introduced in IBM Power Parallel SP2 [94]. The other alternative switching methods are

Mad Postman Switching [108] and Scouting Switching [64], [60]. The scouting switching is

proposed to improve the performance and the capability of the PCS methods to tolerate

faulty links. The work in [65] has also summarized well the mechanisms and the history

of the switching methodologies used so far in the existing interconnection networks and

high performance computing (HPC) arena.

2.3.1 Packet Switching (Store-and-Forward)

Packet Switching method is commonly called also as Store-and-Forward (SAF) switching.

This switching method is implemented by dividing data messages into a number of pack-

ets. Each packet is completely stored in a FIFO buffer before it is forwarded into the next

router. Therefore, the size (depth) of FIFO buffers in the router is set similar to the size

of the packet in order to be able to completely store the packet. Fig. 2.9 shows the visual

diagram of the store-and-forward switching method. As presented in the figure, message

X consists of packets depicted with Xn.m, where n is the packet number and m is the

dataword (wordline) number in the packet. Each packet Xn.m as shown in the figure
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Fig. 2.10: Wormhole Switching.

consists of four wordlines. The first wordline (Xn.1) is the header and the last wordline

(Xn.4) is the tail. The wordlines of the third packet for example, i.e. X3.1, X3.2, X3.3 and

X3.4, are completely stored in the West input buffer of the router node (3,1). The packet

X3.m can then be forwarded to the next router. If the routing has been made then the

West input buffer of the router node (4,1) is free from data.

The packet switching method is the the first switching method that has been used in

many parallel machines. The early parallel machines that use the packet switching are

for example the Denelcor HEPmachine, which is well introduced in [67], the MIT Tagged

Token Dataflowmachine [13] and theManchester Dynamic Dataflow computer [92]. Like

in the off-chip networks area, most of the early NoC concepts and prototypes use also

the packet switching method such as Proteo [191], [190], Nostrum [157], MESCAL [196],

MicroNet [212], CLICHÉ [125] and Arteris [149] (See also Table 2.1).

2.3.2 Wormhole Switching

In the wormhole switching method, messages are divided into a number of flow control

digit or commonly called as flit. Every flit may bring a data word. The main advantage

of the wormhole switching is that the buffer size can be set as small as possible to reduce

the buffering area cost. Fig. 2.10 shows the visual diagram of the wormhole switching

method. The message in the network flows like a worm through holes in the ground. The

main drawback of the wormhole switching method is the problem of head-of-line blocking.

As presented in Fig. 2.10, flits of the message X occupy (reserve) some buffers in the input

ports of the network routers. Every flit of the message X is symbolized with Xn, where

n is the flit number. Other messages cannot acquire the reserved buffers until the flits of

message X have released the buffer reservation. The tail flit or the end flit of the message

will terminate the buffer reservation.

The wormhole switching method was firstly introduced in [57]. The work in [56] has

presented also the performance of the wormhole switching in k-ary n-cube interconnec-
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Fig. 2.11: Virtual Cut-Through Switching.

tion networks. Some parallel machines in the HPC area that use wormhole switching are

for example, Intel Paragon XP/S [104], Cray T3D (Toroidal 3D) [173], IBM Power Paral-

lel SP1 [201] and Meiko CS-2 (Computing Surface) [26]. In the NoC area, the wormhole

switching is also preferred and has been used in some of the latest NoC-based CMP sys-

tems prototypes such as Tile64 [210], TRIPS [87], Teraflops [98] and SCC NoC [103] (See

also Table 2.1).

2.3.3 Virtual Cut-Through Switching

In the store-and-forward packet switching method, the packet is completely stored be-

fore it is forwarded to the next router. The delay to wait for the complete packet storing

can be reduced by forwarding the first lines of the packet to the next router soon after

routing has been made for the packet and when there is enough space in the required

FIFO buffer in the next router to store the first wordlines of the packet. This switching

technique is known as Virtual Cut-Through (VCT) switching and was firstly introduced

in [113]. On-chip router of Alpha 21364 [162] is one of the multiprocessor system that

uses VCT switching method. The work in [120] presents Chaos Router, which is one of

the best VCT switching implementations. A few NoC prototypes such as SPIN [90] and

IMEC NoC [25] use this VCT switching method.

Fig. 2.11 presents the visual diagram of the virtual cut-through switching method. As

presented in the figure, the header of the third packet (X3.1) has been forwarded to the

West input buffer in the router node (4,1), because routing has been made and there is

already a free space to store the packet header. Meanwhile, the tail of the third packet

(X3.4) is still behind in the West input buffer of the router node (2,1). The router in node

(3,1) does not need to store the entire packet wordlines to forward the first wordlines of

the packet. Hence, as shown in Fig. 2.11, every packet can virtually cut-through in the

network nodes.
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2.3.4 Circuit Switching

The circuit switching method is commonly used in a connection-oriented communica-

tion protocol. The circuit switching method is performed by establishing connection and

reserving some communication resources. When a virtual circuit from a source to a des-

tination node has been configured and the successful connection has been informed by

the destination node by sending a response packet to the source node, then the message

can be transmitted through the network in a pipeline manner. At the end of the data

transmission, a control packet is sent to the network to terminate the connection circuit.

The circuit switching method is commonly used to provide guaranteed-bandwidth or

guaranteed-throughput communication protocol for quality of service.

The circuit switching method is originally used in telephone networks. In HPC area,

some parallel machines that have used the circuit switching method are Intel iPSC/2

[171] that uses a Direct Connect Communications Technology and Motorola-based BBN

GP 1000 [37], which uses multistage interconnection network with butterfly interconnect

structure. In the NoC area, the circuit switching method is used to provide guaranteed-

throughput service. Some NoCs that uses the circuit switching method are DSPIN [181],

PNoC [96], MANGO [36] and Æthereal [187].

2.4 Routing Algorithms

This section will present some basic backgrounds and concept about routing algorithms.

In general, the selected routing algorithm for a network is topology dependent. This

section will give only a brief description about deadlock-free routing algorithm suitable for

mesh-based network.

2.4.1 Deadlock and Livelock Configuration

The main issue related to routing algorithm selection is deadlock configuration. Cyclic de-

pendency between packets in the network leads to the deadlock configuration. Fig. 2.12

shows an example of a deadlock configuration. The deadlock configuration is formed

due to cyclic dependency between four packets, i.e. Packet A, B, C and D. Packet A from

router node (1,1) is routed to node (1,2), but it cannot be further routed to node (2,2) be-

cause the East output port has been acquired by packet B. Meanwhile, Packet B from node

(2,2) cannot be further routed to node (2,1) because its required South output port of node

(2,2) has also been acquired by Packet C. The same situations also occurs at the West out-

put port of the router node (2,1) between Packet C and D, and at the North output port of

the router node (1,2) between Packet A and D. All packets form a cyclic dependency and

cannot move further.

Deadlock configuration caused by the cyclic dependency between four packets as pre-
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Fig. 2.12: Deadlock configuration.

sented in Fig. 2.12 can occur because packets are allowed to make all turns in clock-wise

and counter clock-wise turn directions. Deadlock configuration can be avoided by ap-

plying allowed turns and prohibiting minimal one turn in every clock-wise and counter

clock-wise turn direction. The prohibited turns will avoid cyclic dependency between

packets in the network. Routing algorithms derived from turn models will be explained

later in Section 2.4.3. Deadlock configuration can be also avoided by introducing vir-

tual channels which will be explained in Section 2.4.4. The works in [58] and [62] have

presented theoretically how to design deadlock-free message routing algorithms.

If the packets are allowed to make non-minimal adaptive routing (misrouting), then a

problem called livelock configuration may occur. The livelock configuration is a situation

where a packet moves around a destination node but it never reaches the destination

node. The livelock configuration can be avoided by only allowing the packets to make

profitable (minimal) routing. However, if the misrouting is allowed, then the mechanism

to detect livelock configuration must be implemented. The definition of the profitable

(minimal) and the misrouting (non-minimal) adaptive routing will be explained in the

following subsection (Section 2.4.2).

2.4.2 Taxonomy of Routing Algorithms

This section presents a taxonomy of routing protocols that is classified according to sev-

eral criteria [65].

• Number of destinations. According to the number of destination nodes, to which

packets will be routed, routing algorithms can be classified into unicast routing and

multicast routing. The unicast routing sends the packets from single source node to
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single destination node. Themulticast routing sends the packets from single node to

multiple destination nodes. The multicast routing algorithm can be divided further

into Tree-based multicast routing and Path-based multicast routing.

• Routing Decision Locality. According to the place where the routing decisions are

made, routing algorithms (unicast or multicast routing) can be classified into source

routing and distributed routing. In the source routing, routing paths are computed at

source node. The pre-computed routing information for every intermediate node,

to where amessage will travel, will be written in a routing probe. All routing probes

that represent the routing paths from the source to destination node will then be as-

sembled as packet headers for the message. In the distributed routing, there will be

one header probe (for unicast routing case) containing the address of the destination

node (probably also the source node). The routing information is locally computed

each time the header probe enters a switch node.

• Implementation. According to the way the routing information are computed, rout-

ing algorithm can be implemented into table-lookup and finite-state machine . In the

table-lookup implementation, routing slot tables store the routing information that

are implemented on each router. The routing direction on each router is computed

by reading the slot number attached in the header probe of the packet and finding

the appropriate slot number in the routing table, in which the routing information

is stored. In the finite-state machine, the routing information on each router is com-

puted by a routing algorithm according to the destination address attached in the

header probe and the current address of the router node.

• Adaptivity. In both case of the routing implementation, the routing algorithm can be

either deterministic or adaptive. In the deterministic routing algorithm, the computed

paths from source to destination node will always be similar. In the adaptive rout-

ing algorithms, the paths from source to destination can be different because the

adaptive routing select adaptively the alternative output ports. An output channel

is selected based on the congestion information or the channel status of the alterna-

tive output ports. The adaptive routing algorithms generally guide messages away

from congested or faulty regions in the network.

• Progressiveness. According to the progressiveness of the message movement, the

adaptive routing algorithms can be applied as progressive or backtrace-enabled rout-

ing algorithm. In the progressive approach, the message headers will always move

forward or move towards a progressive direction. In the backtrace method, the mes-

sage headers can track back to a previous path and release the previously reserved

channels. The adaptive backtracking algorithms are mainly used for fault-tolerant

routing algorithm.

• Minimality. According to the minimality of the routing path, the adaptive routing

algorithms can be classified into profitable (minimal) ormisrouting (non-minimal) algo-
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Fig. 2.13: Turn models that can avoid deadlock configuration.

rithm. The profitable adaptive routing algorithm will not allow a message to move

away from its destination node. In other words, the message will always be routed

closer to its destination node. The adaptive routing algorithm will route the mes-

sage through the minimal paths that can be selected adaptively. In the adaptive

misrouting algorithm which is also called as the detour routing algorithm, the mes-

sage can be routed away from its destination node. This adaptive routing algorithm

must be designed carefully, because it can lead to the livelock configuration that has

been explained in Section 2.4.1.

• Number of paths. The adaptive routing algorithm can be classified according to the

number of alternative adaptive turns as fully adaptive and partially adaptive routing

algorithm.

According to the work in [84], the degree of adaptiveness Aalg of a minimal adaptive

routing algorithm can be determined based on the number of the shortest paths that can

be used to route a packet from a source node to a destination node. Equ. 2.1 presents the

degree of adaptiveness of a minimal fully adaptive routing algorithm for a 2D mesh net-

work topology to a packet from (Xsource, Ysource) node to the (Xtarget, Ytarget) node, where

∆x = Xoffset = |Xtarget − Xsource|, and ∆y = Yoffset = |Ytarget − Ysource|.

Afully =
(∆x + ∆y)!

∆x!∆y!
(2.1)

2.4.3 Routing Algorithms based on Turn Models

In order to avoid cyclic dependency leading to deadlock configuration, a turn model rep-

resented as turn directions in clock-wise and counter clock-wise can be applied to the de-

sign of a deadlock-free routing algorithm. Design of adaptive routing algorithms based

on turn models has been introduced in [83]. The work has presented examples of turn

models for adaptive routing algorithms in 2D mesh-based interconnetion network. In the

mesh network, there will be four available turns at each clock-wise and counter clock-

wise turns.
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Fig. 2.13 presents four selected turn models that can be used to avoid deadlock con-

figuration. The solid lines in the figure represent the allowed turns, and the dashed lines

represent the prohibited turns. In the turnmodels, allowed and prohibited turns are intro-

duced to avoid possible deadlock configuration. One of the well-known static routing al-

gorithm based on the turn model is dimension-order routing algorithm. Routing algorithms

based on the turn models can be classified into static and adaptive routing algorithms.

The selection of the prohibited and allowed turns in every clock-wise and counter

clock-wise turn direction must be selected correctly in such a way that deadlock configu-

ration can be avoided. Fig. 2.14 shows an example of an incorrect turn model that cannot

avoid a deadlock configuration. The turn model is shown in the left-side of the figure. If

the turn model are combined together as presented in the right-side of the Fig. 2.14, then

it looks like cyclic dependency can still occur in the network.

In 2D mesh network, a dimension-order X-First (XY) routing algorithm or Y-First (YX)

routing algorithm can be used. The turn model of the static XY routing algorithm or static

X-First routing algorithm is presented in Fig. 2.13(a). As shown in the figure, four turns

are prohibited to avoid a deadlock configuration, i.e. North–East, South–East, North–

West and South–West turns. Because of the applied prohibited turns, routing algorithm is

static whereby packets are always routed firstly to X-direction, then to Y-direction. Alg. 1

describes the static XY routing algorithm.

As a counterpart to the X-First routing algorithm, an alternative static routing algo-

rithm can be implemented by firstly routing packets to the Y-direction before they are

routed to the X-direction. This alternative static routing algorithm is called static Y-First

routing algorithm or static YX routing algorithm. In this case, four turns are prohibited to

avoid cyclic dependency, i.e. East–North, East–South, West–North andWest–South turns.

For all source-destination node communications, the degree of adaptiveness of the static

routing algorithm is always 1 (Astatic = 1).

The turn model of adaptive West-First (WF) routing algorithm is presented in Fig. 2.13(b).

As shown in the figure, two turns are prohibited to avoid deadlock configuration, i.e.

North–West and South–West turns. Because of the applied prohibited turns, routing al-

gorithm can be made adaptively, when source–destination offsets, i.e. Xoffset > 0 and

Yoffset > 0 as well as when Xoffset > 0 and Yoffset < 0, where Xoffset = Xtarget − Xsource

and Yoffset = Ytarget − Ysource.
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Alg. 1 Static X-First (XY) Routing Algorithm
1: Xoffset = Xtarget − Xsource

2: Yoffset = Ytarget − Ysource

3: if Xoffset = 0 and Yoffset = 0 then

4: Routing = LOCAL

5: else if Xoffset > 0 then

6: Routing = EAST

7: else if Xoffset < 0 then

8: Routing = WEST

9: else if Xoffset = 0 and Yoffset > 0 then

10: Routing = NORTH

11: else if Xoffset = 0 and Yoffset < 0 then

12: Routing = SOUTH

13: end if

Alg. 2 describes the minimal adaptive West-First routing algorithm. In the West-First

routing algorithm, packets will always be routed firstly to the West direction before they

are routed to the North direction when Xoffset < 0 and Yoffset > 0, as well as firstly

to the West direction before they are routed to the South direction when Xoffset < 0 and

Yoffset < 0. Therefore, this adaptive routing algorithm is calledAdaptiveWest-First Routing

Algorithm. The degree of adaptiveness of the West-First adaptive routing algorithm is

presented in Equ. 2.2.

Alg. 2Minimal Adaptive West-First (WF) Routing Algorithm
1: Xoffset = Xtarget − Xsource

2: Yoffset = Ytarget − Ysource

3: if Xoffset = 0 and Yoffset = 0 then

4: Routing = LOCAL

5: else if Xoffset < 0 then

6: Routing = WEST

7: else if Xoffset > 0 and Yoffset > 0 then

8: Routing=Select(EAST, NORTH)

9: else if Xoffset > 0 and Yoffset < 0 then

10: Routing=Select(EAST, SOUTH)

11: else if Xoffset > 0 and Yoffset = 0 then

12: Routing = EAST

13: else if Xoffset = 0 and Yoffset > 0 then

14: Routing = NORTH

15: else if Xoffset = 0 and Yoffset < 0 then

16: Routing = SOUTH

17: end if

Awest−first =







(∆x + ∆y)!

∆x!∆y!
, Xtarget ≥ Xsource

1, otherwise
(2.2)

Fig. 2.13(c) presents the turn model of adaptive Negative-First (NegF) routing algorithm.



28 CHAPTER 2 ON-CHIP INTERCONNECTION NETWORKS

As shown in the figure, two turns are prohibited to avoid deadlock configuration, i.e.

West–South and South–West turns. Because of the applied prohibited turns, routing al-

gorithm can be made adaptively, when source–destination offsets, i.e. Xoffset > 0 and

Yoffset > 0 as well as when Xoffset < 0 and Yoffset < 0, where Xoffset = Xtarget − Xsource

and Yoffset = Ytarget − Ysource.

Alg. 3 describes theminimal adaptiveNegative-First routing algorithm. In theNegative-

First routing algorithm, packets will always be routed firstly to Negative directions, i.e.

South or Y − direction before East direction when Xoffset > 0 and Yoffset < 0, as well as

West or X− directions before North direction when Xoffset < 0 and Yoffset > 0. There-

fore, this adaptive routing algorithm is called Adaptive Negative-First Routing Algorithm.

The degree of adaptiveness of the Negative-First adaptive routing algorithm is presented

in Equ. 2.3.

Alg. 3 Minimal Adaptive Negative-First (NegF) Routing Algorithm
1: Xoffset = Xtarget − Xsource

2: Yoffset = Ytarget − Ysource

3: if Xoffset = 0 and Yoffset = 0 then

4: Routing = LOCAL

5: else if Xoffset > 0 and Yoffset > 0 then

6: Routing=Select(EAST, NORTH)

7: else if Xoffset ≥ 0 and Yoffset < 0 then

8: Routing = SOUTH

9: else if Xoffset < 0 and Yoffset < 0 then

10: Routing=Select(WEST, SOUTH)

11: else if Xoffset < 0 and Yoffset ≥ 0 then

12: Routing = WEST

13: else if Xoffset = 0 and Yoffset > 0 then

14: Routing = NORTH

15: else if Xoffset > 0 and Yoffset = 0 then

16: Routing = EAST

17: end if

Aneg−first =



















(∆x + ∆y)!

∆x!∆y!
, (Xtarget ≤ Xsource and Ytarget ≤ Ysource) or

(Xtarget ≥ Xsource and Ytarget ≥ Ysource)

1, otherwise

(2.3)

The turn model of adaptive North-Last (NL) routing algorithm is presented in Fig. 2.13(d).

As shown in the figure, two turns are prohibited to avoid deadlock configuration, i.e.

South–East and South–West turns. Because of the applied prohibited turns, routing al-

gorithm can be made adaptively, when source–destination offsets, i.e. Xoffset > 0 and

Yoffset < 0 as well as when Xoffset < 0 and Yoffset < 0, where Xoffset = Xtarget − Xsource

and Yoffset = Ytarget − Ysource.
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Alg. 4 describes the minimal adaptive North-Last routing algorithm. In the North-

Last routing algorithm, packets will be routed at last to North direction after East direc-

tion when Xoffset > 0 and Yoffset > 0, as well as at last to North direction after West

direction when Xoffset < 0 and Yoffset > 0. Therefore, this adaptive routing algorithm

is called North-Last Adaptive Routing Algorithm. The degree of adaptiveness of the North-

Last adaptive routing algorithm is presented in Equ. 2.4.

Alg. 4Minimal Adaptive North-Last (NL) Routing Algorithm
1: Xoffset = Xtarget − Xsource

2: Yoffset = Ytarget − Ysource

3: if Xoffset = 0 and Yoffset = 0 then

4: Routing = LOCAL

5: else if Xoffset > 0 and Yoffset < 0 then

6: Routing=Select(EAST, SOUTH)

7: else if Xoffset > 0 and Yoffset ≥ 0 then

8: Routing = EAST

9: else if Xoffset < 0 and Yoffset < 0 then

10: Routing=Select(WEST, SOUTH)

11: else if Xoffset < 0 and Yoffset ≥ 0 then

12: Routing = WEST

13: else if Xoffset = 0 and Yoffset > 0 then

14: Routing = NORTH

15: else if Xoffset = 0 and Yoffset < 0 then

16: Routing = SOUTH

17: end if

Anorth−last =







(∆x + ∆y)!

∆x!∆y!
, Ytarget ≤ Ysource

1, otherwise
(2.4)

The other well-known adaptive routing algorithm based on the turn models is the

adaptive routing based on Odd-Even Turn Model that was firstly introduced in [48]. In

this approach, the allowed and prohibited turns in the odd and in the even column of

the mesh-based network can be different, but must be still able to guarantee free from

deadlock configuration.

2.4.4 Routing Algorithms with Virtual Channels

Adaptive routing algorithms can be used in a network by implementing virtual chan-

nels. Virtual channels are used to provide alternative channels virtually to avoid cyclic

dependency. One of many techniques to implement adaptive routing algorithms with

virtual channels is by introducing virtual networks or sub networks. Fig. 2.15 presents

two virtual networks on a 2D 4 × 4 mesh network.
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(a) X+ Subnet (Virtual Net 0) (b) X− Subnet (Virtual Net 1)

Fig. 2.15: Mesh Network separated into two virtual networks.

As presented in figure, the virtual networks are calledX+ Subnet or Virtual Network 0

as shown in Fig. 2.15(a) and X− Subnet or Virtual Network 1 as presented in Fig. 2.15(b).

In the X+ virtual network, packets can be routed adaptively from West to North and

from North to East, as well as from West to South and from South to East. While in

the X− virtual network, routing from East to North and from North to West, as well as

routing from East to South and from South to West are allowed. The proposed network

partitioning has been introduced in [47] as a 2D planar adaptive routing algorithm with

2 virtual channels for the two virtual networks. The degree of adaptiveness of the 2D

Planar Adaptive Routing Algorithm is shown in Equ. 2.5.

Aneg−first =







1, Xtarget = Xsource or Ytarget = Ysource

(∆x + ∆y)!

∆x!∆y!
, otherwise

(2.5)

If the offset between target and source node is greather than zero, i.e. Xoffset =

Xtarget−Xsource ≥ 0, then packets will be routed through X+ Virtual Network. While if the

offset between target and source node is less than zero, i.e. Xoffset = Xtarget −Xsource ≤ 0,

then packets will be routed through X− Virtual Network. If the Xoffset = 0, then packets

can be routed either through X+ or X− Virtual Network. Once packets have been routed

in the X+ Virtual Network, they will not be routed in the X− Virtual Network. In con-

trast, once packets have been routed in the X− Virtual Network, they will not be routed

in the X+ Virtual Network. By implementing such routing rules, deadlock configurations

can be avoided.

A deadlock-free routing algorithm can be also obtained by allowing packets being

routed from the X+ Virtual Network to the X− Virtual Network. But once the packets

migrate from the X+ Virtual Network into the X− Virtual Network, they will not be

routed back to the X+ Virtual Network. As an alternative, once the packets migrate from

the X− Virtual Network into the X+ Virtual Network, they will not be routed back to the

X− Virtual Network.
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Fig. 2.16: Two switches connected with virtual channels and the intra-IO interconnect paths of the

switch.

When both virtual networks are combined in a mesh network with full-duplex in-

terconnection, then two virtual channels connecting North and South ports must be im-

plemented. In the full-duplex interconnection between two adjacent nodes, two single

direction physical channels are used to connect the input and output ports between two

adjacent port lines of the adjacent nodes. Fig. 2.16(a) presents two network routers, i.e.

Router 1 and Router 2, connected with virtual channels through their North and South

Input-Output ports.

As presented in Fig. 2.16(a), the South-to-North physical link connecting the South out-

put port of the Router 1 with the North input port of the Router 2 consists of two virtual

channels. Each virtual channel consists of two physical buffers, one is placed at the input

port and the other is located at the output port. Similarly, North-to-South physical link con-

necting the North output port of the Router 2 with the South input port of the Router 1

consists of two virtual channels. The virtual channels are assigned with virtual channel

ID 0 (V C 0) and virtual channel ID 1 (V C 1), respectively.

Packets routed through X+ subnet will be routed through the V C 0, and packets

routed through X− subnet will be routed through the V C 1. The arrow lines presented in

Fig. 2.16(a) are the physical and the virtual channels of the router. The figure also shows

possible turns of routing paths that can be made by the packets through V C 0 and V C 1.

For example, a packet routed from the West input port of the Router 1 can be routed to

the North output port through V C 0, and a packet routed from the East input port of

the Router 1 can be routed to the North output port through V C 1. After the packets

routed from Router 1 through V C 0 has entered Router 2, then this packet can be routed
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adaptively to either the V C 0 at the South output port or to the East output port. Mean-

while, after the packets routed from Router 1 through V C 1 has entered Router 2, then

this packet can be routed adaptively to either the V C 1 at the South output port or to the

West output port.

Alg. 5 shows the deadlock-free minimal adaptive routing algorithm with VCs for the

2-subnetwork interconnection presented in the Fig. 2.15 and the switch structure depicted

in Fig. 2.16(b). In the Fig. 2.16, the Local IO port connecting the mesh router with a

compute element is not presented for the sake of simplicity. As presented in the Alg. 5

and in the Fig. 2.16(b), routing paths through the X+ Sub-Net is done through the virtual

channel ID 0 (V C 0), while routing paths through the X− Sub-Net is done through the

virtual channel ID 1 (V C 1). The all allowable intra IO crossbar interconnects in the switch

with the VCs for both Sub-Nets is presented in the Fig. 2.16(b).

2.5 Performance Evaluation

Two main aspects that are important to test and evaluate the performance of a network

are performance measurement metrics and workload models. Both aspects are explained

in the following subsections.

2.5.1 Performance Measurement Metrics

Performance measurement metric enable us to compare the evaluation results of two

or more network architecture. The performance of an on-chip network is architecture-

dependent and technology-dependent. Two different network router architectures imple-

mented on the same CMOS technology (similar transistor feature size) may have different

performance. In contrast, two similar network router architectures will have different per-

formance when they are synthesized in different CMOS technology. The smaller the size

of the CMOS technology used to synthesize a network router, the higher the performance

of the network router.

• Packet Latency. Packet latency can be defined as packet transfer delay, i.e. the amount

of time needed by the packet to travel through the network from a node from where

the packet is injected until its destination node. If tinject is defined as the time at

which the packet is injected from a source node, teject is defined as the time at which

the packet arrives its destination node, then the packet delay ∆t is formulated as

∆t = tinject − teject. The packet latency can be measured in clock cycle period, which is

technology-independent metric or in second, which are technology dependent. The

clock cycle period is ideal performance metric for latency measurement, because the

architectures of the evaluated networks can be compared fairly, independent from

the selected technology.
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Alg. 5Minimal Adaptive Routing Algorithm with VCs for 2 Sub-Networks
1: Xoffs = Xtarget − Xsource.

2: Yoffs = Ytarget − Ysource.

3: Networks in divided into SubNet X+ and SubNet X−.

4: North(V C 0) Virtual Channel 0 at North output port.

5: North(V C 1) Virtual Channel 1 at North output port.

6: South(V C 0) Virtual Channel 0 at South output port.

7: South(V C 1) Virtual Channel 1 at South output port.

8: while Packet is in SubNet X+ i.e.(Xoffs ≥ 0) do

9: if Xoffs = 0 and Yoffs = 0 then

10: Routing = LOCAL

11: else if Xoffs = 0 and Yoffs > 0 then

12: Routing = NORTH(V C 0)

13: else if Xoffs = 0 and Yoffs < 0 then

14: Routing = SOUTH(V C 0)

15: else if Xoffs > 0 and Yoffs = 0 then

16: Routing = EAST

17: else if Xoffs > 0 and Yoffs > 0 then

18: Routing=Select(NORTH(V C 0), EAST )

19: else if Xoffs > 0 and Yoffs < 0 then

20: Routing=Select(SOUTH(V C 0), EAST )

21: end if

22: end while

23: while Packet is in SubNet X− i.e.(Xoffs ≤ 0) do

24: if Xoffs = 0 and Yoffs = 0 then

25: Routing = LOCAL

26: else if Xoffs = 0 and Yoffs > 0 then

27: Routing = NORTH(V C 1)

28: else if Xoffs = 0 and Yoffs < 0 then

29: Routing = SOUTH(V C 1)

30: else if Xoffs < 0 and Yoffs = 0 then

31: Routing = WEST

32: else if Xoffs < 0 and Yoffs > 0 then

33: Routing=Select(NORTH(V C 1), WEST )

34: else if Xoffs < 0 and Yoffs < 0 then

35: Routing=Select(SOUTH(V C 1), WEST )

36: end if

37: end while
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• Communication Bandwidth. Communication bandwidth can be defined also as data

throughput, i.e. the amount of dataword (Nword) accepted during a certain time

period (Ntime). Hence the data-throughput/bandwidth (Bcomm) is formulated as

Bcomm = Nword

Ntime
. The communication bandwidth can be measured in number of ac-

cepted words per cycle or number of accepted flits per cycle. The maximum value of the

data throughput is 1 words/flits per cycle, which means that in every one clock cy-

cle period, one data word/flit is accepted at destination node. When the evaluated

on-chip network with a certain width of dataword have been synthesized using cer-

tain technology library and the maximum data (working) frequency is known, then

network link and router bandwidth capacity can be measured in kilobytes/Megabytes

per second.

2.5.2 Workload Models

Theworkloadmodels to test the performance of networks are characterized by three main

aspects, i.e. Traffic Scenario, Injection Rate andMessage Size. The three aspects are generally

explained in the following items.

• Traffic Scenarios. Traffic scenarios or traffic patterns can be called also as the distribu-

tion of source-target communication pairs. There are many traffic scenarios that can be

used to evaluate the network performance behaviors. In [65], some data distribution

scenarios are presented such as bit-reversal, bit-complement, butterfly, matrix trans-

pose and perfect shuffle traffic scenario. The following items will present four ex-

amples of data distribution scenarios, where each network node with certain binary

address will inject data to a destination node having the bit permutation address

of the binary address of the data injecting node. Formally, the binary node-to-node

data communication for a network node having n-bit binary address is described as

an−1an−2 · · ·a1a0 ⇔ fpermutation(an−1an−2 · · ·a1a0). (2.6)

1. Bit Reversal. The bit permutation of the bit reversal data distribution scenario

is presented in the following.

fbit−reversal(an−1an−2 · · ·a1a0) = a0a1 · · ·an−2an−1 (2.7)

2. Bit Complement. The bit permutation of the bit complement data distribution

scenario is presented in the following.

fbit−complement(an−1an−2 · · ·a1a0) = ¬an−1¬an−2 · · · ¬a1¬a0 (2.8)

3. Perfect Shuffle. The bit permutation of the perfect shuffle data distribution sce-

nario is presented in the following.

fperfect−shuffle(an−1an−2 · · ·a1a0) = an−2an−3 · · ·a0an−1 (2.9)



2.6 RESEARCH FIELDS RELATED TO NETWORKS-ON-CHIP 35

The perfect shuffle permutation can be interpreted as a cyclical one-bit left-wise

rotation function.

4. Matrix Transpose. The bit permutation of the matrix transpose data distribution

scenario is presented in the following.

ftranspose(an−1an−2 · · ·an
2
an

2
−1 · · ·a1a0) = an

2
−1 · · ·a1a0an−1an−2 · · ·an

2
(2.10)

• Injection Rates. The number of words/flits injected in every certain period of time is

called injection rate. Injection rate can be measured in number of injected words/flits

per cycle metric, or in number of bytes per second metric. The injection rates of mes-

sages from data producer nodes can affect the packet latency and communication

bandwidth of the evaluated networks. Therefore, the bandwidth and latency re-

sponses of the network can be evaluated by varying the rates of data injection at the

source nodes.

• Message Sizes. The number of words/bytes data injected from data producer nodes

can affect the packet latency of the evaluated networks. The more workloads in-

jected to the network, then the more traffics flow in the network, where in general

the packet latency will also increases.

2.6 Research Fields Related to Networks-on-Chip

According to Open System Interconnection (OSI), communication protocols in an intercon-

nection network can be divided into 7 layers, i.e. Application, Presentation, Session, Trans-

port, Network, Data Link and Physical layers as shown in Fig. 2.17. Further descriptions

of each layer in the OSI model can be found in [50]. In the NoC communication proto-

cols, the protocol layers can be shortened into five layers, i.e. application layer at the top

layer, network switch layer and network link layer at the bottom layers, and in the mid-

dle layer, there are two interfaces to guarantee correct data interchanges between the top

and the bottom layers. They are on-chip network interface (OCNI) layer and programming

interface layer (software driver) which can be called as an application programming inter-

face (API). The programming interface is a middeware (software) containing library or

drivers to enable a processing element (PE) core passing messages to other cores via the

network interface. The network interface (NI) is commonly implemented in hardware to

assemble and disassemble a message into packets in such a way that the message can be

routed correctly from a source PE to one or more target PEs through the network routers

and network communication links.

The survey paper in [35] has presented research fields in the NoC area. The survey

paper presents the NoC research area that is classified into four level, i.e. system level,

network adapter (network interface) level, network switch level and network link level.

Based on NoC layers presented in the Fig. 2.17 and the NoC research area classification
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Fig. 2.17: NoC and OSI Model for interconnect protocol layers and the related NoC research areas.

described in [35], we will also present a NoC research area classification described in the

following items.

1. Application and System Level. NoC research fields classified into this group are: hard-

ware/software parallel task partitioning, task-Level parallelism, application map-

ping, NoC-based multiprocessor architecture exploration, traffic characterization

and benchmarking, design methodology and system-level abstraction, etc.

2. Application Interface Level. NoC research fields classified into this group are: de-

velopment of easy-to-use and comprehensive application programming interface

library, development of drivers for embedded IP components, etc.

3. Network Interface Level. NoC research fields classified into this group are: service

management for connectionless and connection-oriented data communication, end-

to-end error correction and data protection, design reuse of network adapters, re-

configurable network adapters, etc.

4. Network Switch Level. Innovative switching methodologies, deadlock-free and fault-

tolerance adaptive routing algorithms, routing methods for collective communica-

tion service, performance evaluation of network topologies, quality-of-service with

data type classification, error protection encoding, switch circuit layout, etc.

5. Network Link Level. NoC research fields classified into this group are: data synchro-

nization, link-level data flow control, link-level error correction and data protection,

low-power data encoding, new data transmission media technology such as fiber

optic and wireless media, etc.

Since the NoC research areas are very wide, we will briefly discussed about a few of

them in the next subsections.
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2.6.1 NoC Quality-of-Service

The NoC research area classification has been mentioned above. One of the interesting

NoC research area is theQuality-of-Service (QoS) for NoC. The QoS for NoCs can be imple-

mented almost in all NoC communication protocol layers. According to the paper chap-

ter in [51], quality-of-service in end-to-end level can be implemented into three ways,

i.e. best-effort service, differentiated service (soft QoS) and guaranteed service (hard QoS).

The best-effort service does not provide guarantee of the data communication, where the

messages are sent with connectionless protocol. The differentiated service classify the

messages into several types with different levels of priority. The guaranteed service re-

quires an absolute reservation of network resources.

The guaranteed service can be enabled by implementing a switched virtual circuit con-

figuration method. This method is basically known as a data multiplexing technique.

Some data multiple access techniques for NoCs have been introduced in the literature

such as Time-DivisionMultiple Access (TDMA) [187], Code-DivisionMultiple Access (CDMA)

[209], Spatial-Division Multiple Access (SDMA) [131] and Identity-Division Multiple Access

(IDMA) [229]. Comparisons of the data multiplexing methodology will be explored later

in Chap. 7.

The QoS for NoCs can also be implemented in the link-level and switch-level to guar-

antee the correctness of the data transmission. The work in [220] for instance presents

a Generic and Extensible Spidergon NoC (GEX-Spidergon) that supports a CRC (Cyclic

Redundancy Code) calculation for the link-level error transmission correction. The work

in [202] presents also a NoC design methodology to tolerate timing errors due to over-

clocking operation mode without substantially affecting the latency for data communica-

tion. A low power and error protection coding for NoC is also presented in [206]. A bus-

invert encodingmethod is used to reduce switching activity that can lead to high dynamic

power dissipation. The work in [75] proposes a joint crosstalk avoidance and triple-error-

correction/quadruple-error-detection codes as an error control coding schemes along the

interconnects of NOC architectures. The works presented in [220], [202] and [206] have

presented examples of the QoS for NoCs in the network switch and network link layers.

However, the work in [68] has mentioned that the use of error-control schemes in on-chip

networks results in degradable systems. Therefore the works introduces an “Intercon-

nect Performability”, i.e. a jointly unified performance and reliability measurement to

consider the trade-off between performance and energy consumption of the error-control

scheme.

2.6.2 NoC in Globally-Asynchronous Locally-Synchronous Context

The context of globally-asynchronous and locally-synchronous (GALS) should be consid-

ered in networked-multiprocessor systems. Skewed delay of the long distributed clock-

tree is the key issue on why we need to apply the GALS context for the NoC-based multi-
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Fig. 2.18: Network-on-Chip-based multiprocessor system in GALS context.

processor systems. There are several techniques that can be used to implement a link-level

data synchronization for GALS-oriented NoC. Examples of techniques that have been im-

plemented so far in the NoCs are based on a handshaking mechanism, source-synchronous

technique, dual-clock buffer implementation, mesochronous technique and so on.

Fig. 2.18 shows a multiprocessor system interconnected in 3 × 3 mesh network archi-

tecture in GALS context. The on-chip routers acting as the communication resource are

clocked in 1 GHz, while computing resources are clocked with different clock cycle fre-

quencies. The figure presents an example of GALS concept implementation by using data

handshaking mechanism between each NoC router in the mesh network and each tile of

the multiprocessor system. As presented in the figure, the handshaking asynchronous

communication is made by introducing a pair of a data validation signal and an acknowl-

edge signal in line with the data wire. The work in [141] for example presents a hand-

shaking mechanism to implement asynchronous interconnects for SoC design. The work

presents clock domain converters consisting of synchronous-to-asynchronous (S2A) con-

verter for outbound data and asynchronous-to-synchronous (A2S) converter for inbound

data.

In the source-synchronous method, the inter switch data communication is synchro-

nized by using an additional clock signal line from the source (data transmitter) switch

to the data receiver switch in line with the data lines. A NoC proposal that uses the

source-synchronous technique is presented in [82]. The work proposes an interconnect

scheme called a variable-tolerant low-power source-synchronous multicycle (SSMC). The

work in [195] also presents a low power high-speed source synchronous transceiver.

The work in [198] has presented a multisynchronous and fully asynchronous NoCs
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for GALS architecture. The asynchronous data communication between NoC switches

is synchronized by using dual-clock FIFO buffers as a multisynchronous domain. The

bisynchronous FIFO buffer is placed on each direction of theNoC link between data trans-

mitter and data receiver switches. The bisynchronous FIFO buffer is then clocked by the

clock signal from the data transmitter side for FIFO-write operation mode, and by clock

signal from the data receiver side for FIFO-read operation mode. Since metastability issue

(synchronization failure) probably occurs by using the multisynchronous approach, the

work in [198] proposes also the fully asynchronous approach by providing synchronous

interfaces to each local subsystem.

The work in [27] presents a power aware GALS-oriented NoC calledALPIN (An Asyn-

chronous Lower Power Innovative NoC). Each tile connected to the ALPIN NoC is consid-

ered to have independent clock domain and voltage domain. The data communication

synchronization is done by using a pausable clock mechanismwhich is implemented by us-

ing Synchronous-to-Asynchronous and Asynchronous-to-Synchronous Interface (SAS). A local

clock generator is programmable and implemented within each unit to generate a vari-

able clock frequency in a predefined and programmable tuning range. In order to opti-

mize the power consumption, an adaptive power reduction technique is introduced to

control the local power supply in the internal core.

The work in [127] presents a reconfigurable baseband platform (FAUST chip) by using

the asynchronous GALS-implemented NoC presented in [27]. Another work that con-

siders a NoC as partitioned voltage-frequency island is presented in [174]. Theoretically

the work has presented the methodology to assign the frequency and voltage level for

partitioned NoC. However, the work in [174] has not verified the impact of the voltage

level assignment on the energy consumption, since the work implements the NoC on an

FPGA device that does not support voltage level conversion.

In the mesochronous technique, the clock signal distributed for IP components is

the same. The mesochronous approach considers each component to have an arbitrary

amount of skew, i.e. time-invariant phase clock offset, depending on the distance of the

component floorplan position from the clock source. The work in [207] proposes a SIM-L

architecture (Skew-Insensitive Mesochronous Link) to solve the wire delay problem in the

asynchronous design style.

Although the asynchronous on-chip interconnects are interesting topics for future

NoC developments, not all the asynchronous methods are compatible with industrial

CAD design tools. The work in [185] for instance has presented an effort to integrate the

standard CAD design flow dedicated to design synchronous integrated circuit. The syn-

chronous NoCs is still an interesting topic. The innovation of a low skew clock-tree for

pipeline stages implementation in the synchronous NoCs will still be a challenging issue.
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2.6.3 NoC Application Mapping

In the embedded MPSoC applications, the processing elements can be a software-based

processor component such as CPU, DSP,microcontroller, and can be a hardware-dedicated

component such as an ASIC device. In order to run an application into the NoC-based

MPSoC systems, the application must be partitioned into several tasks. The work in [24]

for instance has presented the partitioning result of anMPEG4 decoder core into five tasks

run concurrently on an 2D 3 × 2 mesh architecture. In general the application is depicted

in a task communication graph.

Some algorithms used to solve combinatorial problems [193] have been used so far

to map an application onto a NoC platform, since the application mapping problems is

related to the combinatorial problems. Based on the NoC topology architecture to which

the application will be mapped, the NoC application problem can be in general divided

into application mapping on regular and non-regular NoC topologies. The work in [101]

uses a Branch and Bound Algorithm to map application onto a regular mesh architecture.

The objective function of the mapping algorithm is to optimize performance and com-

munication energy. The extended work has been presented in [49], in which the work

considers the problem of mapping multiple applications onto regular mesh architecture

for NoCs with multiple voltage levels. In order to obtain an efficient mapping result,

the methodology is based on an incremental mapping approach by using a Near Convex

Selection Technique.

The other works presenting mapping problems on the regular networks are presented

in [192], [132] and [148]. The work in [192] presents a tool called SMAP that uses a Spiral

Algorithm to map application onto 2D mesh platform and compared the result with Ge-

netic Algorithm. Asmentioned in the paper, the tool can also be used to map an application

onto other NoC topologies with different network sizes. The work in [132] also uses a Ge-

netic Algorithm to optimize computational and communication energy by creating concur-

rently a voltage island partitioning and assignment for NoC with multiple voltage levels.

The work in [148] compares and proposes algorithms to obtain a low-energy mappings

onto NoCs. The compared and proposed algorithms are Exhaustive Search (ES) algorithm,

two stochastic search algorithm, i.e. Simulated-Annealing (SA) Algorithm and Tabu-Search

(TA) Algorithm, a greedy heuristic algorithm called Largest Communication First (LCF) and

another Greedy Incremental (GI) Heuristic Algorithm, as well as a mixed LCF-SA and mixed

LCF-TS algorithms.

The application mapping onto non regular or custom-made network topologies are

more complex than the mapping onto regular topologies because of an additional case

to generate NoC topology architecture before the task application mapping. The work

in [43] presents a power-aware topology construction algorithm to map applications onto a

custom NoC topology in order to optimize communication power for inter-task commu-

nications. The work in [45] also presents an automated technique for the synthesis of

application-specific NoC. The other versions of the work is presented in [199] and [128]
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Fig. 2.19: Parallel task-based application mapping on the CMP System.

that uses a simple linear programming technique and genetic algorithm, respectively, to

generate and to map applications onto NoC with non-regular topology. The work in [32]

shows a NoC synthesis flow to map applications onto NoC with different topologies such

as mesh, torus, hypercube, 3-stage clos and butterfly topology. The framework uses SUN-

MAP tools to perform topology mapping and selection function to select the best topology

from a library of NoC topologies.

The application mapping topics can be divided generallay into Pre-Chip Manufacture

and Post-Chip Manufacture application mappings. Most of the current embeddedMPSoCs

make the application mappings at design time, where applications are known before the

chip is fabricated. This approach is static and limited to a specific application, and task

allocation (mapping) can be better optimized. However, this approach is not valid when

the applications are not known at design time [54]. Therefore, the application mappings

on the post fabricated chip is an interesting approach to provide an open solution for

several target derivatives (various applications) on the same silicon [54]. The post-chip

manufacture application mapping is the special case of the task allocation issue for chip-

level multiprocessor (CMP) systems. However, this approach could also be an interesting

issue for the embedded MPSoC application.

Fig. 2.19 shows themapping of a parallel task-based application on a CMP system. Ev-

ery task is assigned into a single networked computing core (worker core). The mapping

algorithm is done in the master core of the CMP system to optimize the communication

energy of the application. Afterwards, the master core will deploy the executable code of

each task to the local instruction memory of each computing resource to which the task is

assigned. We can see for example, the task number 0 and 7 (T0 and T7) is assigned to the

worker core at node (1,3) and node (1,0), respectively.
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2.6.4 NoC-based Multiprocessor Systems and Parallel Programming

In general, multiprocessor architecture can be divided into two classification, i.e. Shared-

Memory Architecture and Distributed-Memory Architecture. Fig. 2.20 shows the shared-

memory and distributed memory architectures for multiprocessing systems. The selec-

tion of parallel programming model can determine the architecture for the multiproces-

sor system. The shared-memory architecture as presented in Fig. 2.20(a) is suitable when

using a sharedmemory programming model. The parallel programming models for mul-

tiprocessor system will be explained later towards the end of this subsection. However,

the shared-memory programming model can also be run on the distributed memory ar-

chitecture as shown in Fig. 2.20(b). This approach is commonly called aDistributed Shared-

Memory (DSM) system architecture.

The DSM system architecture has been an issue in all kinds of multiprocessor systems

in recent years. Especially in supercomputing, memory access topologies and memory

bandwidth are the crucial points for gaining the targeted overall system performance.

In [66], a performance evaluation for the Cray X1 DSM architecture is presented. In X1

multistreaming processors (MSPs), memory access is performed via a cache, which is

shared by four single stream processors (SSPs). Four MSPs share 16 memory banks, hav-

ing 16 individual memory controllers. This allows local memory access in parallel to

global data communication, accessing some of the 16 memory banks.

Principles of DSM architectures have already been presented in [169], where struc-

ture, granularity and coherence issues are described. The work in [42] gives a clear

description and evaluation of producer-consumer mechanisms in shared memory mul-

tiprocessors. Comparing producer-initiated and consumer-initiated data communica-

tion schemes, producer-initiated mechanisms (as data forwarding and user-level mes-

sage passing) provide the highest efficiency, being comparatively insensitive to network

parameters (latency, bandwidth) [42]. In [4], a dynamic approach for balancing memory

access and avoiding access contention is presented, which applies memory page migra-

tion in consumer-initiated DSM systems.
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Interesting DSM reference architectures are represented also by the MIT Alewife Ma-

chine architecture [2] and the Stanford DASH (Directory Architecture for Shared Mem-

ory) multiprocessor [130]. Bhuyan et al. [34] presented a multistage bus-based architec-

ture for the realization of a DSM system. Most of the aforementioned multiprocessor

system architectures are dedicated for “off-chip” or “on-board” multiprocessor system.

The work in [158] for instance, presents a crossbar NoC architecture as a platform for a

shared-memory architecture, where several processing elements, several shared memory

units and a main memory controller are connected to a central crossbar. This approach

also follows the NUMA paradigm.

According to the online tutorial presented in [20], parallel programming models can

be classified into Shared Memory Programming,Message Passing Programming, Thread-based

Programming and Data Parallel Programming models. According to Flynn’s Taxonomy as

shown in the same source, the programming models can be traditionally classified based

on the way the data and instructions are parallelized, i.e. Single-Instruction Single-Data

(SISD), Single-Instruction Multiple-Data (SIMD), Multiple-Instruction Single-Data (MISD)

and Multiple-Instruction Multiple-Data (MIMD) programming models. The MIMD pro-

gramming model is an interesting model for industries and academia that have been ap-

plied to model parallel computations. The work in [139] for example, have demonstrated

the used of the MIMD programming models in conducting “A Large Ion Collider Exper-

iment” (ALICE) at CERN, the European Nuclear Research Center in Geneva. The work

has presented the development of Multi-Chip Module (MCM) for transition radiation de-

tector (TRD) that requires 70,848 chips, where each chip consists of four RISC processors

resulting in a total number of 283,392 processors. GeForce 6800 [159] as media proces-

sor system for instance, is programmed by using the SIMD programming models. The

GeForce contains 6 vertex processors and 16 fragment processors, where each of which is

a VLIW and SIMD parallel processing engine.

In the shared memory programming model, a common address space in a global

memory is shared by several parallel tasks. Data ownership in the shared-memory pro-

gram cannot be well viewed by programmers, and data communications between the

tasks are very implicit. Hence, data locality cannot be controlled by programmers. In

contrast, in the message passing programming model, data locality and communications

are explicit in the programmers point of view, because the programmers are responsible

to determine parallelism and data exchanges between the tasks. Application program-

ming interface (API) library that are commonly used as subroutines to develop a message

passing parallel program are “MPI” [156] and “PVM” [79]. Both libraries are available for

C/C++ and Fortran computer languages. Tutorial for the message passing programming

model by using the MPI library can be found in [21].

The thread-based parallel programming model can be implemented in the shared-

memory multiprocessor architecture. Routine or procedure in a computer that can be

run concurrently with other ones is best described as a thread. Multiple independent

instruction streams (threads) running simultaneously must be scheduled by computer
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operating system. Two common application programming interface (API) libraries used

to a build thread-based (multi-threaded) shared-memory parallel application are POSIX-

Threads [23] and OpenMP [22]. The POSIX-Threads API has been an IEEE Standard

(IEEE Std 1003.1) to develop portable thread-based parallel computer programs. A joint

group of major computer hardware and software vendors has defined the specification

of the OpenMP (Open Multi-Processing) API library [175]. The work in [15] presents

the paradigm shift in the OpenMP view from thread-centric to task-centric. The task-

centric OpenMP was developed to express the task-level parallelism and to improve the

limitation of the existing OpenMP standard presented before. The enhancement of the

OpenMP such that it can be implemented to program multicore systems is presented

in [44].

Some existing multiprocessor systems such as Montecito [151], AMD Opteron [121]

and Niagara [119] are multiprocessor systems that can be programmed by using the

thread-based parallel programming model. Multiprocessor systems capable of running

multithread parallel applications are commonly called Symmetric Multi-Threading (SMT)

Machine.

The report in [53] presents the evaluation of the capability and limits of current scien-

tific simulation development tools and technologies with specific focus on their suitability

for use with the next generation of scientific parallel applications and High Performance

Computing (HPC) platforms. The report presents also an interesting spreadsheet outlin-

ing current capabilities and characteristics of leading and emerging tools in the high per-

formance computing arena. Probably, not all specifications dedicated for HPC platforms

could be adopted to the embedded MPSoC or general-purpose CMP platforms, but the

idea of such concept can be implemented for future on-chip multicore processors gener-

ation. The work in [40] has proposed an aggressive framework, including a full-featured

compiler infrastructure for thread-extraction, that can produce scalable parallelism from

a sequential program without changes to the sequential programming model.

2.6.5 Testing Methods for NoC-based Multiprocessor Systems

A complete test for a NoC-based CMP system is grouped into two main tests: network

and tile tests. The network test can be divided into switch and link test, while the tile

test can be divided generally into memory and processor core test. A complete strategy

for a multiprocessor system has been proposed in [5]. Each resource is equipped with a

Test Wrapper in accordance with a standard wrapper presented in [186] to enable a local

BIST (Built-in Self Test). In general, the main objective of testing methods are to minimize

test application time and energy, to find fault-models such that faults can be found and

localized, and to accurately verify the fabricated chips, whether they can be released in

markets or not.

Testing methodology for network switch and link have been presented so far in lit-

erature. A test method for crosstalk-induced delay and glitch faults in NoCs with an
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asynchronous communication protocol is presented in [29]. An efficient NoC switch test

methodology has been presented in [99], where test vectors are broadcasted using a mini-

mum spanning tree technique. The work in [88] has also proposed a multicast scheduling

algorithm to optimize the test time for NoC communication fabrics. A cost-effective test

sequence for the testing of data, control and handshake mechanisms in a mesh NoC is ex-

hibited in [55] and [69]. The work in [33] has presented a robust concurrent methodology

to make an online NoC testing.

Testing the functionality of the tiles interconnected in a NoC communication system

is also a challenging research area. Since the tiles can be an ASIC (IP component) or a

microprocessor system containing cache (on-chip memory) and CPU core, then testing

methodology can be done with different approaches. The works in [9] and [122] use a

NoC as test access mechanism (TAM) to test embedded cores. However, in this approach,

the NoC switches and links must have been tested previously to let us know the NoC

condition. Totally fault switch can lead to the isolation of the core connected directly to

the fault switch from the NoC-based multiprocessor system.

2.6.6 ASIC and FPGA Implementation Issue

In general, NoC VLSI architectures can be implemented on an Application-Specific Inte-

grated Circuit (ASIC) or on a Field Programmable Logic Device (FPGA). The work in [180]

has presented and analyzed the challenge to implement a NoC router on ASIC technol-

ogy. The work in [184] has presented also potential problems and challenge to implement

a NoC router on ASIC device by using 65-nm CMOS standard-cell technology. Layout-

aware analysis of NoCs for multiprocessor systems has been described in in [11].

TheNoC architecture, in a special casewhere the size of the overall system architecture

is not too large, can also be implemented on the FPGA device. Current FPGA devices

that have been released in market thus far have a limited number of programmable logic

slices. Based on such situation, the implementation of a large size (massive) NoC-based

multiprocessor system on an FPGA device is still limited, andwill be implementable until

FPGA devices having massive logic slices exist. The FPGA implementation of the NoC

architecture on the FPGA device will be preferably made for system emulation purpose

[81].

The work in [164] for example has presented a platform for MPSoC emulation, where

the limitation of the FPGA logic block enforces the authors to intoduce two solutions.

When, the number of the computing resources is four or fewer, then a single FPGA device

with more than 1,000 IO pins is used to design the MPSoC system. For more complex

MPSoC platforms, a board based on an array of FPGAs that is oriented to a NoC-based

communication resource is used to design the platform.
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2.6.7 Advanced NoC Research Issues

Advanced issues related to future NoC research consist of a novel integration technol-

ogy and architecture for massively-parallel NoC-based multiprocessor systems and new

media technology for low-power data communications. A stacked 3D NoC integration

is one of the possible solutions to integrate IP components, memory components and

communication resources on a single chip. The main issue of the new concept is the de-

velopment of new computer-aided design (CAD) tools for automated NoC design, syn-

thesis and floorplanning. Since the power consumption is one of important aspects to

design extremely ultra-large scale integration (ULSI) systems, the innovation of an ultra

low-power medium is also one of the top future topics.

Themain feature of the 3D integration is the vertical interconnects between the stacked

layers in the 3D ICs. The work in [143] has presented a low-overhead fault tolerance

scheme for 3D NoC links based on the Through Silicon Via (TSV). The work in [183]

has presented a multi-layered on-chip interconnect for 3D NoC Router architecture. The

work tries to optimize and reduce the overall area requirements and power consumption

by using a cycle-accurate 3D NoC simulator. The research about 3D NoC integration is

not yet mature and still requires further investigations to cover some issues such as CAD

supports, potential chip defects, power dissipations, inter-layer data synchronization, etc.

The innovations of a new medium technology to provide low-power data communi-

cation will be a challenging issue in the future. Among many ideas, two potential new

media that have been investigated so far as presented in the literature are fibre optics

and wireless (air) media. In the fibre optics media, data or information are transported

via light (photonic) signals. The main issue related to the photonic technology is that

the light cannot be stored in storage components such as FIFO buffers in NOC router

switches. CMOS photonics for high-speed interconnects has been developed in [91]. The

work in [197] has analyzed a promising approach to use fibre optics as a new medium

for NoC data communications. Meanwhile, the work in [218] has presented a wireless

ultra-wideband NoC using SD-MAC (synchronous and distributed medium access con-

trol) protocol with collision-free on-air data routing to provide a quality-of-service. The

work takes advantages from the recent Radio-Frequency CMOS technology for wireless

physical channel design. However, like the 3D integration, the photonic and wireless

interconnect technologies for NoCs are also not yet mature.

2.7 Summary

This chapter has presented some fundamental aspects related to networks-on-chip. The

VLSI microarchitecture and implementation of a NoC router depends on the selection of

the data transmission service (with unicast, with or without multicast service), routing

implementation (state machine or routing table or combination of both), routing algo-

rithm (static or adaptive), switching methodology (packet, wormhole or circuit switch-
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ing), data synchronization mode (synchronous or asynchronous) and the data integrity

requirement (with or without error correction check). The routing algorithm of a NoC

is strongly dependent on the topology architecture of the NoC. Deadlock configuration

problem is an important issue to design a routing algorithm for a NoC router. There are

many techniques to handle the deadlock configuration problem. This chapter has pre-

sented only two techniques, i.e. deadlock avoidance based on turn models and virtual-

channels, which are in general the most preferable solutions.

This chapter has also presented some issues related to NoC research area and other

topics strongly related to the NoCs such multiprocessor systems, network interface and

parallel programming models. However, this thesis will only focus on four main aspects,

i.e. switching method, multicast routing implementation, routing adaptivity design and

QoS implementation for guaranteed message delivery service in the network protocol

layer. Prior to discussions of all these aspect in the next chapters, a concept and VLSI

microarchitecture of a NoC called XHiNoC (eXtendable Hierarchical Network-on-Chip)

that flexibly supports the aforementioned aspects as well as the formal descriptions of the

proposed NoC router will be presented next in Chap. 3.
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(eXtendableHierarchicalNetwork-on-Chip) developed at Institute ofMicroelectronic Sys-

tems, Darmstadt University of Technology, as part of this thesis. A preliminary introduc-

tion to the concept of the sharing of communication media (NoC links and routers) for

networked multiprocessor systems is described in Section 3.1.

The generic components and microarchitecture of the XHiNoC router supporting the

development of the flexible communication media are explained in Section 3.2. This chap-

ter will also present some specific features and characteristics of the XHiNoC communi-

cation system as described in Section 3.3. The simulator equipment (testbench modules)

for performance evaluation of the XHiNoC as well as the special feature of the simulator

equipment is explained in Section 3.4. Section 3.5 will summarize the discussion about

the XHiNoC communication infrastructure including several issues related to the design

concept.

3.1 Design Concept

The XHiNoC is developed not only to provide a communication infrastructure for embed-

ded multiprocessor systems-on-chip (MPSoC) devices, which are generally implemented

for consumer electronic products, but also for further implementation of chip-level mul-

tiprocessor (CMP) systems, which are designed for general-purpose multicore computer

systems. The main purpose of the XHiNoC is to give a flexible shared communication

media of the on-chip interconnection network. In order to provide such flexible com-

munication media sharing, a concept of locally organized packet identity (ID) division

multiple access (IDMA) method suitable for NoCs is introduced. Local ID slots are dis-

tributed over every communication link, which can be attached to every flit of a packet

or data stream as its local ID-tag.

The use of the locally organized message ID, where variable local ID-tag in line with

additional flit type control bits attached on each flit of messages, will:

1. enable us to apply a runtime routing reservation table programmingwhen the table-

based routing method is used to route packets,

2. enable us to reduce the size of the routing reservation table on every NoC router

input port when the NoC will be designed for logic area optimization purpose, and

would be applied for embedded MPSoCs having predictable traffics characteristic.

3. allow us to implement a wormhole switching method, in which flits belonging to

different messages can be interleaved at flit level in the same communication link,

4. allow us to apply a very flexible concept for communication media share methodol-

ogy supporting unicast andmulticast message routing for collective communication

service, and
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5. enable us to implement a flexible runtime connection-oriented communication that

is commonly required in multimedia applications with streaming-based data (au-

dio/video) communications, i.e. the virtual circuit configuration can be made au-

tonomously by packet or data stream headers at runtime during application execu-

tion time.

3.1.1 Media Sharing with Local ID Management

Fig. 3.1 presents an example of the flexible communication media sharing by using the

local ID-tag organization and management. The local ID-tag reconfiguration and man-

agement in the XHiNoC are made autonomously by packet headers at runtime during

application execution time. The figure shows one example of many possible local ID slot

configurations and shows a small 2D 3 × 2 mesh NoC topology (6 NoC routers i.e. Rk,

where k ∈ {1, 2, 3, 4, 5, 6}). Seven messages, i.e. message A, B, C, D, E, F and G are

routed in the networks and share the communication resources. Message B for instance

is injected from router node R4 with local ID-tag 1 and is accepted or ejected in the router

node R3 with local ID-tag 0. On the next remaining intermediate downstream links, the

message B reserves local ID-tag 1 and 0, successively, until it reaches its destination node

(R3). During transmission in the intermediate links, the local ID-tag of each message is

updated and mapped properly to allow resource communication sharing with other flits

of different messages in interleaving manner. For example, in the link connecting East

port of R4 and West port of R5, the local ID-tag of the message B is 2. While the others

messages, i.e. message A and message D reserve local ID-tag 0 and local ID-tag 1 respec-

tively. Thus, three messages share the link with three different local ID tags. There is no

restriction such that every message must be allocated to a certain local ID slot. The local

ID slot reservation made by every message depends on the current status of the local ID

slots, they are free or have been reserved by other messages.

In order to support such flexible method to share the communication media, a policy

must be applied to guarantee correct routing path and proper flits forwarding of each

message. A few rule that must implemented in the proposed methodology is explained

in the following.

1. Flits belonging to the same message or data stream will always have the same lo-

cal ID-tag. In oder words, different flits belonging to different message will have

different local ID-tags on every local communication link.

2. The ID-tag of each message will be updated each time it enters a new communica-

tion resource (link). Two parameters, i.e. previous ID-tag in the previous link and

input port number from which a message comes can be used to index a reserved

local ID tag.

3. A local ID-tag that has been reserved by a message cannot be used by other mes-

sages until the message has terminated the reservation of the local ID-tag.
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Fig. 3.1: Flexible concept view of the communication media share with local ID-tag management.

Based on the policy and rules to implement the proposed flexible communication me-

dia share methodology, few implementation consequence must be fulfilled to support the

concept. Firstly, the need for a specific packet format to transport message through the

network, and secondly, the need for local ID slots, which must be implemented over all

local communication link, where a message allocated to a local ID slot k on a current link

will use the slot k as its ID-tag on the link.

Fig. 3.2(a) presents the generic specific packet format of the XHiNoC. A message or a

streaming data is divided into flow control digits called flit. The definitions of the flits are

described in Def. 3.1, Def. 3.2 and Def. 3.3, respectively. The total bit-width of each flit of

the message or streaming data is btotal = btype + btag + bword, where btype is the bit-width of

the flit type field, btag is the bit-width of the id-tag field and bword is the bit width of the

data word.

Unicast message/stream is single packet that consists of one header flit, databody

flits, and one tail flit, while a multicast message/stream consists of more than one header

flits, where the number of header flits depends on (equals to) the number of the multicast

destination nodes. Even if the size of the message/stream is extremely large, it has only

one tail flit. In other words, a message or data stream is assembled in a single packet.

Definition 3.1 (Data Flit) A data flit (flow control digit) coming from input port n is repre-

sented as Fn(type, ID). It consists of a data word with additional flit type field (type) and local

ID-tag field. Each flit will always bring a data word together with its type and its local (See

Fig. 3.2(a)).
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Definition 3.2 (Flit type) The type field represents the type of each flit. The flit type can be a

header, a databody or a tail flit (type ∈ εtype|εtype = {header, databody, tail, response}).

Based on the Def. 3.2, the types of flits can be identified into four types that are de-

scribed in the following.

• Header flit is a flit that is attached in the probe of a message. As the leading flit, the

address of the destination node is written on the bit-field of the flit. The header flit

initiates the ID slot reservation including routing table slot reservation and ID tag

updating function. The header flit is used basically to establish routing path or to

configure connection.

• Databody flit is identified as the payload data of a message/stream. Hence, the sub-

stantial word of the message is injected into the NoC as databody flits.

• Tail flit is used to mark the end of a message/stream. The tail flit can bring a sub-

stantial word of the message or a special information or non-substantive word. The

tail flit is basically used to close the routing path or to terminate the connection.

• Response flit is used when a connection-oriented guaranteed-service communica-

tion protocol is implemented in the NoC router, where the response flit is sent by a

destination node to inform the source node about the status of the connection, i.e.

successful or fail. When a best-effort data communication protocol is implemented,

the response flit is used to initiate data retransmission when data drop mechanism

is allowed, because one free ID tag in the acquired link cannot be allocated for the

message, since all available ID slots have been reserved by other messages (runout

of ID slots).

Definition 3.3 (Flit ID-tag) ID-tag field present on each flit is a local label (ID-tag) to indicate

and differentiate the flit from different flits. Flits belonging to the same message or streaming data

will always have the same local ID-tag on each communication link Li,j ∈ Λ. The value of the local

ID-tag is defined as ID ∈ Γ|Γ = {0, 1, 2, · · · , Nslot − 1} where Nslot is number of available ID

slot on communication link Li,j ∈ Λ. See also later the definition of the local ID slot in Def. 3.4.

Definition 3.4 (Local ID Slots) Each communication link Li,j ∈ Λ has Nslot number of avail-

able local ID slots, which is defined as a set Ωi,j j Γ (See Def. 3.3). If an assumption is made

such that all communication links has the same number of available ID slots, then we will have

Ωi,j j Ω. We define a single local ID slot k ∈ Ω, where k = Nslot − 1 is reserved for packet flow

control purpose, and the usable ID slots are ∀k ∈ Ω ∩ k 6= Nslot − 1.

Fig. 3.2(b) presents the concept view of a communication link Li,j of the XHiNoC con-

necting router Ri and Rj . A flit flowing through the link Li,j is exhibited as Fij(type, ID).

Based on Def. 3.3 and Def. 3.4, a message allocated to an ID slot k ∈ Ω will then use the

slot number k as its local ID-tag (ID = k). Fig. 3.2(b) give us insight that the flows of

message flits on the link Li,j is controlled by configuring the ID slot table at the output

port of the router Ri and the routing reservation table at the input port of the router Rj .
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3.1.2 Main Issue Related to Local ID Slots Availability

The main issue related to the local ID-based method for flexible communication media

share is a runout of local ID problem. In a certain NoC topology, there will be a fact that

there are some links that are never used by packets sent from some computing element

cores to some destination cores. Let us examine the case of a NoC in 2D N × M mesh

topology, and let us also set the address and port names of each node as (x, y, Op), where

x is the horizontal address such that 0 ≤ x ≤ N − 1, y is the vertical adddress such

that 0 ≤ y ≤ M − 1, and Op ∈ {East, North, West, South, Local}. Thus, when each

communication edge of the 2D N ×M mesh architecture is implemented with full-duplex

link, then, except for the local port connected directly to a computing element core, the

number of available local ID slots in the North, South, East and West port can be set to a

minimum number, i.e. less than N × M number of local ID slots.

When a minimal fully adaptive routing algorithm is used to route packets, then the

minimum number of the available ID slots that can be set to each output port of every

NoC router is shown in Equ. 3.1.

NFull.Adap
Min.Slot (x, y, Op) =











































M(x + 1), 0p = East and 0 ≤ x < N − 1

N(y + 1), 0p = North and 0 ≤ y < M − 1

M(N − x), 0p = West and 0 < x ≤ N − 1

N(M − y), 0p = South and 0 < y ≤ M − 1

NM − 1, 0p = Local

0, otherwise

(3.1)

When a XY static routing algorithm is used to route packets, then the minimum num-

ber of the available ID slots that can be set to each output port of every NoC router is

shown in Equ. 3.2.
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when using minimal fully adaptive routing.

NXY Static
Min.Slot (x, y, Op) =











































x + 1, 0p = East and 0 ≤ x < N − 1

N(y + 1), 0p = North and 0 ≤ y < M − 1

N − x, 0p = West and 0 < x ≤ N − 1

N(M − y), 0p = South and 0 < y ≤ M − 1

NM − 1, 0p = Local

0, otherwise

(3.2)

The Equ. 3.1 and Equ. 3.2 are derived with the assumption that a router node will not

send packets to itself. The minimum number of ID slots at the Local output port is set to

(NM − 1) to anticipate an all-to-one communication, a kind of collective communication

mode, where all nodes send a message to the one target node. When the number of ID

slots at each output port is set according to Equ. 3.1 and Equ. 3.2, then we can guarantee

that the ID slot runout problem in the 2D N×M mesh architecture can be avoided. There-

fore, a packet dropping mechanism in the data link layer and retransmission protocol in

the transport layer can be neglected, because both mechanisms may end up in unfairness

for some traffic flows

Fig. 3.3 shows an example of the minimum number of acceptable available ID slots

at the East output port in the mesh node (1, 1) and at the North output port in the mesh

node (2, 0), when we use a minimal fully adaptive routing algorithm for the 2D 4 × 3

(N = 4, M = 3) mesh network architecture. By using Equ. 3.1, the minimum number

of ID slots at the East output port at the node (1, 1) should be 6 ID slots. As presented

in the Fig. 3.3, the East outpot port at node (1, 1) can be acquired by 6 messages from

6 other mesh nodes, i.e. from mesh nodes (0, 0), (1, 0), (0, 1), (1, 1), (0, 2) and (1, 2). By

using the static routing algorithm, then according to Equ. 3.2, the East output port will be

only acquired by 2 messages, i.e. messages from mesh nodes (0, 1) and (1, 1). Meanwhile,

the North output port in the mesh node (2, 0) can be accessed by 4 messages according

to Equ. 3.1, i.e. the messages injected from mesh nodes (0, 0), (1, 0), (2, 0) and (3, 0) as
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Fig. 3.4: An example of 2D 3 × 3 mesh network and a typical mesh router.

presented in Fig. 3.3.

3.2 Generic VLSI Architecture

The XHiNoC microarchitecture and components library are packaged in a generic modu-

lar design and synthesis flow to develop NoC communication infrastructure for the mul-

tiprocessor systems. Before the generic microarchitecture and generic components of the

XHiNoC router are introduced, some basic definitions related to on-chip interconnection

network and on-chip router are defined in the following.

Definition 3.5 (Network on Chip) A network on chip (NoC) can be represented as a directed

graphG(ℜ, Λ), whereΛ is represented as a set of edges (communication links) andℜ is represented

as a set of vertices (router nodes).

Definition 3.6 (Router) NoC consisting of Nnode number of node will have a set of NoC Router

ℜ = {R1, R2, · · · , RNnode
} or Rc ∈ ℜ|c = {1, 2, · · · , Nnode}.

Definition 3.7 (Communication Link) Communication link Li,j ∈ Λ is a communication re-

source connecting router node Ri and Rj where Ri, Rj ∈ ℜ, and i, j = {1, 2, · · · , Nnode}.

The number of link components in the set ℜ depends on network-on-chip topology.

We can describe that ¬∀i, j such that Li,j exists. The left part of the Fig. 3.4 shows a NoC

in 3 × 3 mesh network topology with full duplex links connection. Based on Def. 3.5,

it looks that the router set is ℜ = {R1, R2, R3, R4, R5, R6, R7, R8, R9}, while the set of the

communication resources is defined as Λ = {Li,j, i 6= j, ∀i, j : Ri, Rj are connected}. For

instance, there are two links connecting R1 and R2, i.e. L1,2 and L2,1. For a 2D mesh with

grid size of N × M , then there will be a number of 2N(M − 1) + 2M(N − 1) links in the

mesh network.
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Definition 3.8 (Router IO Port) For a number of Ninp input ports and a number of Noutp out-

put ports of a router R ∈ ℜ, the set of input ports as is described as ρI =
{

I1, I2 · · · , INinp

}

and the set of output ports as ρO =
{

O1, O2 · · · , ONoutp

}

. Hence, if Φ = {1, 2, · · · , Ninp} and

ϕ = {1, 2, · · · , Noutp}, then an input port of router is defined as In ∈ ρI |n ∈ Φ, and an output

port of a router is defined as Om ∈ ρO|m ∈ ϕ. Furthermore, ∀n : In = n and ∀m : Om = m.

The right part of the Fig. 3.4 shows an example of a NoC router for the 2D mesh net-

work architecture. The router consists of five IO ports, which are labeled with numerical

alphabets, i.e. East (1), North (2), West (3), South (4), and Local (5) ports. Based on Def. 3.8,

the sets of the router input and output ports are Φ = {1, 2, 3, 4, 5} and ϕ = {1, 2, 3, 4, 5}. In

this case, the number of input and output ports are the same (Ninp = Noutp).

The generic microarchitecture of our NoC router (switch) is presented in Fig. 3.5(a). In

general, the router consists of two main component groups, i.e. component groups at in-

put and output ports. At every input port, there are a First-In First-Out (FIFO) buffer/queue

and a Routing Engine with Data Buffering (REB) components. The REB components con-

sists of three modules, i.e. a Route Buffer, a Routing Engine (RE) and a Grant Controller

(GC). The RE module consists of a Routing State Machine (RSM) unit and a Routing Reser-

vation Table (RRT). The following items describes briefly the functionality of the input port

component group.

• The FIFO Bufer is used to buffer data coming from a neighbor to the input of the NoC

router. The depth of the FIFO buffer can be set to only 2 registers in the proposed

VLSI microarchitecture. The detail explanation of this component will be explored

in Section 3.2.1.

• TheREmodule is used to make a routing decision such that a message can be routed

from an input port to an output port. The detail and formal explanation of this

component will be explored in Section 3.2.2.

• The Route Buffer is used to buffer a message flit soon after the routing decision has

beenmade for the flit. This single buffer module is introduced to insert an additional

pipeline stage in the router such that the performance of the router can be improved.

• The GC module is a combinatorial logic used to control the data read operation of

the FIFO buffer, i.e. to control the data pipeline stage from the FIFO buffer to the

register of the Route Buffer.

At each output port, there are twomainmodules, i.e. an (Arbiter (A) unit and aCrossbar

Multiplexor with ID Management (IDM) Unit (MIM). In each MIM modules at the output

port, there is an ID Slot Table. The functionality of the output port component group is

described briefly in the following items.

• The Arbiter or Arbitration unit at an output is used to select a message flit from

an input port that will be switched out to the output port. The detail and formal

explanation of this component will be explored in Section 3.2.3.
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Fig. 3.5: Generic microarchitecture of the XHiNoC and the 2D array (matrix) representation of its

routing and arbitration control paths.

• The MIM module is used to multiplex message flits from input ports and concur-

rently used to update the ID-tag of each message and manages the ID Slot Table in

such a away that flits belonging to the same message will have the same ID-tag.

Section 3.2.4 will explore in detail the functionality of this component.

In the crossbar wire area as presented in Fig. 3.5(a), there are two signal paths, i.e.

data paths and control paths, where each of them can be formally described in a matrix

as shown in Fig. 3.5(b) and Fig. 3.5(c), respectively. The data paths are the data wires

connecting the data output ports of the REB unit and the data input ports of the MIM

modules. The control paths are divided into routing paths and arbitration paths. Both

control paths are the wire sets of the routing request signals and the routing acknowledge

or arbitration signals.

Fig. 3.5(b) and Fig. 3.5(c) show the 2D array formation of the routing signals and ar-

bitration signals, respectively. The presentations of the routing signals r(n, m) and arbi-

tration signals a(n, m) as shown in Fig. 3.5(a) are similar to the presentations of the rout-

ing signals rn,m shown in Fig. 3.5(b) and the arbitration signals an,m shown in Fig. 3.5(c)

(r(n, m) ∼= rn,m and a(n, m) ∼= an,m). In Fig. 3.5, it is defined that Ninp = Noutp = N (See

Def. 3.8).

In a regular switch structure with a number of N IO ports, the REB component at input

port n ∈ Φ sendsN-bit routing request signal (r(n, m)) to everym ∈ ϕ arbiter units at each

output port. As the responses to the routing request signals, the REB component will
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receive N-bit routing acknowledge (arbitration) signal (a(n, m)) from the m ∈ ϕ arbiter

units. If a data flit is buffered in the FIFO, it will be then routed and buffered in the REB

unit. The routing signal is sent to the arbiter unit at the requested output port. If the REB

unit receives a routing acknowledge signal from the arbiter unit, it will be switched out

to the outgoing link in the next cycle.

The routing request signals rn,m and the arbitration signals an,m are implemented in

the digital VLSI hardware as binary-encoded signals. By considering the mesh router

structure presented in the right part of Fig. 3.4 consisting of 5 output ports, then based

on Def. 3.8, n ∈ Φ = {1, 2, 3, 4, 5} and m ∈ ϕ = {1, 2, 3, 4, 5}. Every RE module at an

input port theoretically can make five output routing directions, i.e. output port direction

1 (East), 2 (North), 3 (West), 4 (South) and 5 (Local). Hence, the binary-encoding of the

output routing direction will be represented in Equ. 3.3.

To port 1 ∼= 1 0 0 0 0

To port 2 ∼= 0 1 0 0 0

To port 3 ∼= 0 0 1 0 0

To port 4 ∼= 0 0 0 1 0

To port 5 ∼= 0 0 0 0 1

(3.3)

Every single digit of the encoding signal is sent in-order to every single output port.

Therefore, in general, the width of the binary encoding signals is set equal to the number

of the output port of the router. For instance, when the routing direction from any input

port n is to output port 2, then the encoded-routing signal is rn,1:N = [0 0 0 0 0], where

rn,1 = [0] sent to output port 1, rn,2 = [1] sent to output port 2, rn,3 = [0] sent to output

port 3, rn,4 = [0] sent to output port 4 and rn,5 = [0] sent to output port 5. By using such

encoding signals, it is easy to implement a multicast routing. For example if a flit from

input port n will be routed to more than one output port, e.g. to port 1, port 4 and to

port 5, then the encoded-binary signals generated from the routing engine at input port

n is rn,1:N = [1 0 0 1 1]. Fig. 3.6(a) presents a typical microarchitecture with the data

and control path structure of the XHiNoC mesh router. Fig. 3.6(d) shows the detail IO

components of a NoC mesh router. For the sake of simplicity, only router components in

the West Input port and in the East Output port are exhibited in the figure.

3.2.1 First-In First-Out Buffers

This section will give a brief description about the behavioral model of a First-In First-

Out (FIFO) buffer and operations applied in the component. The block diagram of the

Register Transfer Level (RTL) model of the FIFO buffer is exhibited in Fig. 3.7. In general,

FIFO buffer consists of FIFO registers and a FIFO controller. The FIFO controller controls

modes of FIFO operation by reading control-path input signals and providing control-

path output signals and read-write operation applied to the FIFO registers. The read-
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Fig. 3.6: Typical microarchitecture, routing request matrix, arbitration matrix and detail IO com-

ponents of XHiNoC mesh router (5 IO ports).
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Fig. 3.7: The typical structure of the FIFO buffer.

address (RdAdd) and write-address (WrAdd) are the internal signals of the FIFO buffer

that determine the addresses where the incoming data will be stored in the FIFO registers

and from which register the data will be read out from the FIFO buffer, respectively.

The FIFO buffer comprises data paths and control paths. The data paths are the data

input (Qin) and the data output (Qout). The control paths as the input control signals are

write-enable (WrEn) and read-enable (RdEn) signals. While the output control signals

are Full and Empty/V alid signals. If there is no more free space in the FIFO register, then

the Full signal will be set to ′1′. While, if there is no data stored in the FIFO register, then

the Empty/V alid signal is reset back to ′0′.

The first-in first-out operation in the FIFO buffer is presented in Alg. 6. The func-

tion incr() is a circulating incremental function. When the address pointers (WrAdd and

RdAdd) have pointed to the largest register address, then the address pointer will point

back to the lowest register address of the buffer after undertaking a considered FIFO op-

eration. When the data queues of the FIFO buffer are full, then the full flag signal is set,

while in the absence of data in the FIFO buffer, then the empty signal is set.

There are three modes of operation applicable to the FIFO buffer, i.e. read operation,

write operation and simultaneous read-write operation. Fig. 3.8 presents the three modes

of operation. When the FIFO queue is in an empty state, then only write operation is

applicable, and when the FIFO is in full state, then only read operation is applicable to

the FIFO buffer. The simultaneous read-write operation could be applied to the FIFO

buffer, when the FIFO is in full state. However, it is difficult to control and avoid drops of

data, if the read-write operation is enabled in the full state.

Fig. 3.8 present an example of successive write, read-write and read operations in

the FIFO buffer. In Fig. 3.8(a), flit A appears in the input port of the queue and set the

WrEn signal to ′1′. Initially, the FIFO is empty and the WrAdd as well as the RdAdd

are set to register number “0′′. Thus in the next cycle, the data flit A is stored in the

Register “0′′ (write operation), and the WrAdd is incremented to register number ‘“1′′ and

the V alid/Empty signal is set to ′1′ as presented in Fig. 3.8(b). The flit A appears now at

the output port of the FIFO buffer. In the same period, a new data flit B appears in the

input port of the queue, and the RdEn signal is set to ′1′. Thus in the cycle, a simultaneous
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read-write operation occurs as presented in Fig. 3.8(c). Both the WrAdd and the RdAdd

are incremented to “2′′ and “1′′, respectively. The flit B (in register number “1′′) appears

at the output port because the RdAdd signal is now set to “1′′. The RdEn signal is still set

to ′1′, and the WrEn signal is now set to ′0′. Thus in the next cycle, the read operation

is applied as presented in Fig. 3.8(d). The content of the register number “1′′ is removed,

and the V alid/Empty signal is then reset to ′0′.

Alg. 6 First-In First-Out Queue

WrEn, RdEn : Write and Read enable

WrAdd, RdAdd : Write and Read address pointer

Reg(k) : Queue register

Qin, Qout : Input and output data queue

Full, Empty : Buffer full and empty signals

MaxBuff : Maximum number of buffers

1: BEGIN FIFO queue

2: if WrEn is True and RdEn is True then

3: Reg(WrAdd) ⇐ Qin; incr(WrAdd)

4: Reg(RdAdd) ⇐ ∅; incr(RdAdd)

5: else if WrEn is True and RdEn is False then

6: Reg(WrAdd) ⇐ Qin; incr(WrAdd)

7: Empty is False

8: if incr(WrAdd)=RdAdd then

9: Full is True

10: end if

11: else if WrEn is False and RdEn is True then

12: Reg(RdAdd) ⇐ ∅; incr(RdAdd)

13: Full is False

14: if incr(RdAdd)=WrAdd then

15: Empty is True

16: end if

17: end if

18: Qout ⇐ Reg(RdAdd)

19: END FIFO queue

Some works regarding the impact of the FIFO buffer implementation on several as-

pects have been shown in many literatures. The work in [219] has explored router area

implication based on the buffer allocation in the router implemented on an FPGA device.

The experiment has presented that, when the overall amount of buffers in the output and

in the middle-buffer architecture is constant or equal, then the middle-buffer architecture

provide a slightly smaller logic block area. However, if the sizes of the FIFO buffer are

set to the minimum size (e.g. 2 register), then the input or the output-buffer architecture

will have much smaller logic gate area consumption compared with the middle-buffer

architecture.

The depth of a buffer or the number of register space in a buffer of the router can have

a significant impact on the gate area of the router. The work in [59] uses conventional vir-

tual channel flow control with a large amount of of buffer size, i.e. about 10K bits in each
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Fig. 3.8: Examples of successive mode of operations in the FIFO buffer.

input controller. An alternative flow control method can substantially reduce the buffer

storage requirements at the expenses of reduced performance. Some methodologies can

be used to reduce the buffer size. For instance, by using packet dropping or misrouting

when the packets encounter contention [59].

The misrouting approach used to limit the size of the FIFO buffer and to reduce packet

dropping possibility has been introduce in [85]. The work proposes some technique to re-

duce packet dropping and the resulting consequence, i.e. misrouting, external misrouting

and extra loopback channels. However, the proposed misrouting and external misrout-

ing methodologies still allow packet to drop in any circumstance, e.g. the number of

misrouting has reached its maximum value, since the number of misrouting must be lim-

ited to avoid livelocks. The proposed extra loopback channels method allows additional

buffering resources at each switch to prevent packet drops. However, this extra buffer

can increase logic area of the router and still enable packet dropping (the methodology

can only reduce the packet dropping possibility). Packet dropping protocol reduces the

NoC performance, while misrouting protocol increases wire loading and hence power

dissipation [59].

The work in [102] proposes an efficient algorithm that optimizes the allocation of

buffering resources across different router channel while matching the communication

characteristics of the target application. The work in [38] also suggests a non-uniform

buffer allocation. A buffer-sizing algorithm for NoCs using TDMA and credit-based end-

to-end flow control is also proposed in [52], in which, due to the usage of credit-based

end-to-end flow control that places additional requirements on the buffer sizes, the flow

control delays need to be taken into account. The aforementioned algorithms are de-

signed to find the minimal decoupling buffer sizes for a NoC, subject to the performance

constraints of the applications running on the SoC. However, we are sure that even if the

proposed algorithms mentioned above can consider multiple-use cases, where the SoC

can be dedicated to run some applications, the number of implementable applications is

limited. It is certainly clear that the proposed methods are only suitable for pre-fabricated

MPSoC systems and cannot be used in post-fabricated MPSoC and general-purpose chip-

level multiprocessor (CMP) systems. This is because after the post-manufacturing step,

there is no more chance to add or reallocate buffers in the NoCs.
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A variation-aware low-power buffer design is proposed in [167]. The work in [117]

proposes adaptive channel buffers as storage elements in addition to existing router buffers

when NoC are working at high load. However, both methodologies take into account the

usage of virtual channels that can lead to very large area overhead. The work in [152]

has a decoupled control and datapath to design a NoC router. The approach is also used

in our NoC router architecture, where the control and data paths are design separately.

The XHiNoC concept is intended to implement FIFO buffers, which can give similar per-

formance even when the depth of FIFO is increased by applying the link-level flit flow

control and flit-level data multiplexing based on the local ID management concept.

3.2.2 Routing Engines

The Routing Engines used in the NoC router architecture are a combination of a routing

state machine (see Def. 3.10) and a routing reservation table (see Def. 3.11). The com-

bination is aimed at supporting a runtime routing organization during application exe-

cution time, in which the routing decisions are made locally in each NoC router that is

distributed over the NoC (local/distributed routing).

Definition 3.9 (Routing Direction) A routing direction rdir is a signal made by a routing en-

gine. The routing direction values are the set member of the output port numbers, i.e. rdir ∈

D, D = {1, 2, · · · , Noutp}.

Definition 3.10 (Routing State Machine) The routing state machine (RSM) provides a rout-

ing function fRSM where the output of the function depends on the destination address appearing

on the target address field Adest of a header or a response flit. If a header or a response flit is de-

tected by the routing state machine, then the routing direction of the flit is computed with routing

function fRSM : fRSM(Adest) ⇒ rdir, where Adest is the destination address present on the header

or the response flit, and rdir ∈ D according to Def. 3.9.

Definition 3.11 (Routing Reservation Table) A Routing Reservation Table (RRT) of the RE

unit at an input port is defined as

T (k|k ∈ Ω) = rdir ∈ D = {1, 2, 3, · · · , Noutp} (3.4)

or T (k) ∈ D|k ∈ Ω. Definition of D can be found in Def. 3.9. So, one can define that ∀k ∈ Ω,

the value of the Routing Reservation Table T (k), is a routing direction rdir ∈ D. The routing

direction is indexed in the Routing Table based on the ID-tag.

The array structure of the Routing Reservation Table T can be seen in Fig. 3.2(b). The

number reservable routing slots is Nslot, which is equal to the number of local ID slots in

the link Li,j .
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Definition 3.12 (Routing Engine) Routing Engine (RE) is a component to make a routing di-

rection rdir ∈ D. For Ninp number of router input ports, then the number of RE per router is

NRE = Ninp. The RE at input port In ∈ ρI is En, n ∈ ρI . The En provides a routing function

fRE giving routing direction D, or the function is defined as fRE : rdir = fRE (type, ID, Adest),

where Adest is the destination address field present in the header flit.

Alg. 7 Runtime ID-based Routing Mechanism

Read Data Flit from Queue : Fn (type, ID)

1: Ftype ⇐ type

2: Adest is obtained from Header flits

3: BEGIN Routing

4: if Ftype is Header then

5: rdir ⇐ fRSM (Adest)

6: T (ID) ⇐ rdir

7: else if Ftype is Databody then

8: rdir ⇐ T (ID)

9: else if Ftype is Tail then

10: rdir ⇐ T (ID)

11: T (ID) ⇐ ∅

12: else if Ftype is Response then

13: rdir ⇐ fRSM (Adest)

14: end if

15: END Routing

The RE (En) at input port n ∈ Φ consists of a combination of routing state machine M

and routing reservation table T . Accordingly, there will be pairs of (Mn, Tn) |∀n ∈ Φ. Both

components are allocated at each input port. If a data flit Fn,m (type, ID) is coming from

an input port n to an output portm of the router Ri, then the Routing Engine will compute

and organize routing directions of the flit by using a routing organization algorithm as

shown in Alg. 7.

As shown in Alg. 7, the routing operation in the Routing Engine depends on the type

of the data flit Fn(type, ID). The type of flit will determine which component (M or T )

that will give a routing direction. When a header flit Fn,m (header, ID) is coming from

an input port n, a routing direction rdir is computed by the RSM, and it is concurrently

written (copied) in the slot number k in the RRT, where k = ID (equal to the ID-tag

of a header flit) such that T (ID) = rdir. When a databody Fn,m (header, ID) or tail flit

Fn,m (header, ID) is coming to the input port n, then the rdir is fetched directly from the

slot number k = ID in the RRT. The operation rdir ∪ T (ID) in the algorithm is the union

operation between the current content of the T (ID) in the slot number ID and the current

value of the routing direction rdir. When the flit type is a response flit, then the routing

direction is made by the RSM without making further access to the RRT.

Fig. 3.9 presents the architectural concept view of the routing reservation and orga-

nization based on local ID-tag for 4 different types of flits. Fig. 3.9(a) shows the routing

operation when a header flit is read from the data buffer of the REB component. In this
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Fig. 3.9: Local ID-based routing reservation and organization.

case, the RSM unit will compute the routing direction rdir. The RE will write or assign

the encoded rdir (r = [0 0 0 1 0]) into the programmable register/slot of the RRT (i.e. slot

number 2) according to the ID-tag of the header. Fig. 3.9(b) shows the routing operation

when a databody flit is routed to the output port 4. The RE will read the ID-tag of the

flit and find the routing direction from the slot number 2 in the RRT unit according to the

ID-tag of the databody flit. The same situation is presented in Fig. 3.9(c) when a tail flit

is routed to the output port. But, at the end of the switching phase, i.e when the tail flit

will be switched out to the output port 4, the content of the slot number 2 is removed.

The previous flits mentioned above (i.e. the header, databody and tail flit) have the same

ID-tag. It means that they belong to the same message/data stream, and is routed to the

same output port.

Fig. 3.9(d) exhibits the routing operationmade by the RE components when a response

flit is routed to an outgoing port. The RSM will compute the routing direction for the

response flit, but the routing direction will not be assigned in the routing reservation

table (RRT). The response flit is a single flit sent by a node another node to inform the

connection status made by a guaranteed-service header. Hence, the response flit is used

only when the XHiNoC router implements the connection-oriented guaranteed-service.
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3.2.3 Arbitration Unit

Every communication link is fairly shared by contenting packets. This is allowed by

applying a rotating (circulating) flit-by-flit arbitration as defined in Def. 3.16.

Definition 3.13 (Time-Varying Binary Request) A time-varying input-output request from

an input port n ∈ Φ to an output portm ∈ ϕ is defined as rn,m(t) : ∀n, m|rn,m(t) ∈ {0, 1}. Hence,

the time-varying input n binary request can be defined as array of binary or rn,m=1 to Noutp
(t)

or rn,m=1:Noutp
(t) or rn,1:Noutp

(t), and the time-varying output m binary request is defined also

as rn=1 to Ninp,m(t) or rn=1:Ninp,m(t) or r1:Ninp,m(t).

Definition 3.14 (Set of Requests from an Input Port) A set of requests from an input port n

to output ports is defined as ϕreq
n , thus the number of set membersN req

s,n is defined as the number of

requests from an input port n to output ports at time stage ts. Further, we can define the definitions

in the following equation.

ϕreq
n ⊂ ϕ ⇔ N req

s,n =
∑Noutp

m=1 rn,m(ts) < Noutp

ϕreq
n ⊆ ϕ ⇔ N req

s,n =
∑Noutp

m=1 rn,m(ts) = Noutp

ϕreq
n = ∅ ⇔ N req

s,n =
∑Noutp

m=1 rn,m(ts) = 0

h ∈ ϕreq
n ⇔ rn,h(t) = 1 (3.5)

According to Def. 3.14 for example, if rn,1:5(ts) = [1 0 1 1 0] or rn,1(ts) = [1], rn,2(ts) = [0],

rn,3(ts) = [1], rn,4(ts) = [1] and rn,5(ts) = [0], then N req
s,n = 3 and ϕreq

n = {1, 3, 4}.

Definition 3.15 (Set of Requests to an Output Port) A set of requests to an output port m

from input ports is defined as Φreq
n , thus the number of set members N req

s,m is defined as the number

of requests to an output port m from input ports at time stage ts. Furthermore, we can define the

definitions in the following equation.

Φreq
m ⊂ Φ ⇔ N req

s,m =
∑Ninp

n=1 rn,m(ts) < Ninp

Φreq
m ⊆ Φ ⇔ N req

s,m =
∑Ninp

n=1 rn,m(ts) = Ninp

Φreq
m = ∅ ⇔ N req

s,m =
∑Ninp

n=1 rn,m(ts) = 0

l ∈ Φreq
m ⇔ rl,m(t) = 1 (3.6)

According to Def. 3.15 for example, if r1:5,m(ts) = [0 1 1 0 1] or r1,m(ts) = [0], r2,m(ts) =

[1], r3,m(ts) = [1], r4,m(ts) = [0] and r5,m(ts) = [1], then N req
s,n = 3 and Φreq

m = {2, 3, 5}.

Definition 3.16 (Rotating Flit-by-Flit Arbitration) A rotating flit-by-flit arbitration is an

arbitration strategy at every output port m that circulates its selection among input ports l ∈ Φreq
m

according to Def. 3.15 and Equ. 3.6 in flit-by-flit manner.
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Alg. 8 shows the rotating/circulating flit-by-flit arbitration at every output port m. At

initial time (no request at all), the arbiter will firstly serve, the first incoming flit. When

many flits need arbitration service at the same cycle, the arbiter will rotate its selection

like a round-robin arbiter, but the arbitration is done in a flit-by-flit and active-port-by-

active-port manner. Active-port refers to an input port having request for routing. It

means that the arbiter circulates a selection but will not select input ports having no data

flit.

Definition 3.17 (Rotating Arbitration Time) Input port selection in every output port m will

be recirculated in every Ts,m + 1, where Ts,m = N req
s,m is a Rotating Arbitration Time.

Definition 3.18 (Binary Output Acknowledgement) We have defined the time-varying out-

put m binary routing request in Def. 3.13. Thus, we can now define the Request-Dependent

Binary Output Acknowledgment as a1:Ninp,m(t). For ∀n|an,m(t) ∈ {0, 1} where only one el-

ement of a1:Ninp,m(t) can be set to ’1’ because of natural hardware constraint of an arbiter unit.

When N req
s,m > 1, then physically it mean that there is contention between N req

s,m number of flits

between input ports in the set Φreq
m to access the same output port m.

For example, if the binary request r1:5,m(ts) = [0 1 0 1 1]T , then according to Def. 3.17

and Equ. 3.6, Ts,m = 3. The set of possible order of the rotating arbitration at output port

m is a1:5,m(1) = [0 0 0 0 1]T , a1:5,m(2) = [0 0 0 1 0]T and a1:5,m(3) = [0 1 0 0 0]T . According to

Def. 3.15, Φreq
m = {2, 4, 5}. We can see that r1:5,m(ts) =

⋃t=3
t=1 a1:5,m(t).

Alg. 8 Rotating Flit-by-Flit Arbitration

Binary Request : rn ∈ {0, 1} : n = 1, 2, · · · , Ninp

Initial Value : RotStart = Ninp, RotStop = 1

1: BEGIN Arbitration

2: while ∃n : rn 6= 0 & the next queue is ¬Full do

3: for n = RotStart downto n = RotStop do

4: if rn = 1 then

5: select ⇐ n

6: RotStart = n − 1

7: RotStop = n

8: end if

9: end for

10: end while

11: Result: select ⇒ In

12: END Arbitration

3.2.4 Crossbar Multiplexor with IDManagement Unit

For each communication resource (link/channel) Li,j connecting an outport port (Om ∈

ρO) of an on-chip router Ri with an input port (In ∈ ρI) of an adjacent (neighbor) router
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Rj , then an amount of local identity (ID) slots N i,j
slot is implemented on the communication

link Li,j ∈ Λ.

Definition 3.19 (ID Slot Table) ID Slot Table State is defined as a set of slot state S, where

S =
{

S0, S1, S2, · · · , SNslot−1
}

and ∀k ∈ Ω: Sk ∈ {true, false} (See Def. 3.4). If Sk = true, it

means that the ID Slot state is “free”, else if Sk = false, then the ID Slot is being “used” by any

message. We can define the ID Slot Table as

∀k ∈ Ω: S(k) = (IDold, Ffrom) ∈ (Ω, Φ) (3.7)

The set Φ = {1, 2, 3, · · · , Ninp} according to Def. 3.8. We define Ffrom as the selected flit from

any input port as the arbitration result.

Fig. 3.2(b) can help to comprehend Def. 3.19 and describes the structure of the ID Slot

Table S. The figure presents the ID Slot Table in output port of Router Ri and the Routing

Table in the input port of Router Rj . A communication link Li,j connecting the output

and input port of the Ri and Rj. For the sake of simplicity and for maintaining a design

regularity, it is assumed N ij
slot = Nslot. Therefore, the number of available ID tags on each

communication link is uniform.

As shown in Alg. 9, when a header flit Fn(header, ID) with ID-tag ID coming from in-

put port n is switched to an output portm then an ID-tag update function fIDM : (IDold) 7→

IDnew is made, and a free ID slot is searched for the header. When a free ID slot k is found,

the input port n and the ID-tag ID arewritten in the slot number k in the S, and the header

uses this ID slot k as its new ID-tag (IDnew = k). When the header fails to find a free ID

slot, it will be assigned to ID slot Nslot − 1. When a databody Fn(databody, ID) or tail

Fn(tail, ID) flit having the same ID-tag with the previously routed header Fn(header, ID)

flit is switched to the output port m, then they will be assigned with the same new ID-

tag k. The databody and tail flits will be dropped from the network if its header having

the same ID-tag fails to reserve an ID Slot k ∈ Ω ∩ k 6= Nslot − 1 on a certain link. Like

response flits, header flits having ID tag Nslot − 1 will always be routed in the NoC with

the ID tag Nslot − 1, in which their paths can be guaranteed correct even when many

Fn(header, Nslot − 1) and Fn(response, Nslot − 1) flits flow in the NoC. Since these flits are

only single-flit, destination address that is attached in the their address-field are indepen-

dent from the routing table contents accordingly.

The conceptional view of the local ID-tag update and management mechanism is pre-

sented in Fig. 3.10. Fig. 3.10(a) presents a mechanism to update and to organize the ID

slot table in the MIM modules when a header flit is switched out to an output port. The

figure shows a packet header coming from port 2 port with ID-tag 1. The header flit is

just switched from crossbar switch its ID-tag is updated to reserve an new ID-tag in the

slot table of the MIM module. The ID update process can be described into 4 steps.

When the IDM detects a new incoming packet header, then the IDM will look for a

free ID slot by checking the ID-state table. According to the figure the ID slot 0 and the ID
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Alg. 9 Runtime Local ID-tag Update

Outgoing Data Flit : Fn (type, ID)

Input Arbitration : n = {1, 2, · · · , Ninp}

NusedID : number of used/reserved ID slots

Nslot − 1 : Slot reserved for control purpose (Nslot − 1 = H)

1: Ftype ⇐ type; IDold ⇐ ID; Ffrom ⇐ n

2: BEGIN ID Update

3: if Ftype is Header then

4: if IDold = Nslot − 1 then

5: IDnew ⇐ Nslot − 1

6: else if IDold 6= Nslot − 1 then

7: for k = 0 to k = Nslot − 2 do

8: if ∃k : Sk is true then

9: S(k) ⇐ (IDold, Ffrom)

10: Sk ⇐ false /* the ID Slot is used now */

11: IDnew ⇐ k; NusedID ⇐ NusedID + 1

12: else

13: IDnew ⇐ Nslot − 1

14: end if

15: end for

16: end if

17: else if Ftype is Databody then

18: for k = 0 to k = Nslot − 1 do

19: if ∃k : k 6= Nslot − 1: S(k) = (IDold, Ffrom) then

20: IDnew ⇐ k

21: else if ∄k : k 6= Nslot − 1: S(k) = (IDold, Ffrom) then

22: IDnew ⇐ ∅

23: The Databody flit is dropped

24: end if

25: end for

26: else if Ftype is Tail then

27: NusedID ⇐ NusedID − 1

28: for k = 0 to k = Nslot − 1 do

29: if ∃k : k 6= Nslot − 1: S(k) = (IDold, Ffrom) then

30: IDnew ⇐ k; S(k) ⇐ (∅, ∅)

31: Sk ⇐ true /* the ID Slot is now free */

32: else if ∄k : k 6= Nslot − 1: S(k) = (IDold, Ffrom) then

33: IDnew ⇐ ∅;

34: The Tail flit is dropped

35: end if

36: end for

37: else if Ftype is Response then

38: IDnew ⇐ Nslot − 1

39: end if

40: IDnew ⇒ ID

41: END ID Update
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Fig. 3.10: Local ID-tag update and mapping management.

slot 1 have been used by messages coming from port 3 and port 5, respectively. The ID-

tag 2 is now detected as a free ID slot, and then this ID is assigned as the new ID-tag for

the new packet header. Afterwards, the ID-slot 2 is indexed based on two informations

i.e., the old (previous) local ID-tag 0 and data “2” (port 2) from which port the header flit

comes. In the same cycle, ID-tag 2 state is set from “free” to “used” state, and the number

of used ID (NID) is incremented from 2 to 3. When all ID slots have been used, then

“empty free ID flag” is set.

In the next time period, when payload (databody) flits come from port 2 with ID-

tag 0, then they will also be assigned with the new ID-tag 2. Fig. 3.10(b) shows how this

ID-tag is assigned automatically by the ID management (IDM) unit. The IDM unit just

reads the current ID-tag of the databody flit and from which port it comes as an input

references. Afterwards, it searches for the suitable new ID-tag by comparing the contents

of the programmable registers of the ID Slot Table with both input references. When the

tail flit (the end of databody) of the message with ID-tag 0 from port 2 is passing through

the outgoing port, then the ID-tag 2 state is set from “used” to “free”, and the NID is

decremented from 3 to 2. The tail flit is also assigned with the local ID-tag 0 like databody

flits. But, at the end of the cycle, the values in slot number 2 of the ID Slot Table are

removed from the programmable registers as presented in Fig. 3.10(c).
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When a response flit having local ID-tag H = Nslot − 1 is switched out from an output

port as presented in Fig. 3.10(d), then this flit will also assigned with its previous ID-tag.

The local ID slot H is reserved for control purpose. The response flit is used to inform

the status of connection establishment when the XHiNoC is implemented for connection-

oriented guaranteed-service. The response flit will always have ID-tag H = Nslot − 1 over

all communication links in the XHiNoC. When header flits fail to establish connection,

i.e. they fail to reserve e.g. a local ID slot on a certain outgoing link, then they will be

allocated also in the local ID slot H = Nslot − 1. Like response flits, header flits having

ID tag H = Nslot − 1 will be always routed in the NoC with the ID tag H = Nslot − 1, in

which their paths can be guaranteed correct even when many Fn(header, Nslot − 1) and

Fn(response, Nslot − 1) flits flow in the NoC, since these flits are only single-flit, in which

destination address is attached in the their address-field. Afterwards, the header flits will

be always assigned to the local ID slot H until they reach their destination nodes.

3.3 Characteristics and Features

This section will mentioned some characteristics of the XHiNoC as well as the interesting

features of the XHiNoC that makes it a unique NoC router compared with other existing

NoC routers. The specific features are the consequences of the implementation of the

ID-based multiple access technique.

3.3.1 Pipeline Architecture

Compared with Intel Teraflops NoC [98], which has six-stage pipeline, i.e. Buffer Write,

Buffer Read, Route Compute, Port/Lane Arbitration, Switch Traversal and Link Traversal, the

XHiNoC uses also the same technique with reduced pipeline stages. The XHiNoC uses

only 4-stage pipeline, i.e. Buffer Write, Buffer Read+Route Compute, Port Arbitration and

Switch/Link Traversal. The Buffer Read and Route Compute pipeline line stages are com-

bined to reduce the cycle delay from the input port to the output port of the router,

while Intel Teraflops cannot because it implements a double-pumped (dual lane) crossbar

switch. When the REB unit reads a flit from the FIFO queue, then the REB will compute

the routing direction and store the flit at its buffer in the same step. We combine also

the Switch and Link Traversal stages because, once the flit is switched out, then it can be

written in the FIFO queue in the next router. Certainly, both pipeline stage reductions

must be controlled carefully to avoid flit drops and unnecessary flit replications.

Fig. 3.11 shows the timing diagram of the inter-switch data flow. Flits of message A

are switched from the West input link to the East output link of a router. A data flit is

transmitted on the input link in every two-cycle. Then every flit is stored in the queue

and switched to the outgoing link through two phases, i.e routing request-phase and

routing-acknowledge phase. Phase 2 and phase 3 shown in Fig. 3.11 presents the request
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Fig. 3.11: Timing diagram (without contention) of the data switching and control paths.

and the acknowledge (grant) phases for the F lit A1. While phase 4 and phase 5 presents

the request and the grant phase for the F lit A2.

The signal flow in data path of each flit is made pipeline synchronously, and the signal

flow in control path is made in two cycle phases. Although the flit flow in the router is

delayed for two cycles, the flow rates of the flits in the input link will be as same as the

flow rates in output link as long as the flits is transmitted on link with 0.5 flit per cycle

or slower and there is no blocking situation in the next routers. Based on the timing

diagram shown in Fig. 3.11, the Buffer Write, Buffer Read+Route Compute, Port Arbitration

and Switch/Link Traversal pipeline stages are represented in the figure in the cycle phase 1,

phase 2, phase 3 and phase 4, respectively.

3.3.2 Simultaneous Parallel Data Input-Output Intra-Connection

Our NoC can switch maximum N simultaneous crossbar intraconnects in parallel. The N

number depends on the number of I/O pairs in the router. This feature is certainly not a

new topic in the NoC research area as it has been implemented by someNoC architectures

such as Intel Teraflops NoC [98], SCC NoC [103], Æthereal NoC [188], etc. However,

we will present in this section, how the NoC performs such advantageous feature of a

modern NoC router design with high bandwidth capacity. Fig. 3.12 presents graph views

(left side) and structural views (right side) of a five-simultaneous crossbar interconnection

in the XHiNoC mesh router for instance, i.e. the data input-output connections are from

East (E) to West (W), North (N) to South (S), West (W) to North (N), South (S) to Local (L),

and from Local (L) to East (E). The five simultaneous data input-output intra-connections

are explained in the following items.

1. Routing-Request Phase. After the flit is buffered and appears at the output port of

the Queue, then in the next cycle phase, the RE module computes routing request

bit signals and sends the signals to an Arbiter unit at the requested output port.

Fig. 3.12(a) shows the graphical view and structural view of this phase.

2. Request-Acknowledge Phase. When the Arbiter units at the requested output ports

detect the routing request signals, then each Arbiter sends back a grant or rout-

ing acknowledge signal to the RE component. At the same cycle the Arbiter unit
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Fig. 3.12: Request-Grant-Accept mechanism to switch data in the XHiNoC router.



3.3 CHARACTERISTICS AND FEATURES 75

sends also a selection signal to the MIM component. This phase is presented by

Fig. 3.12(b).

3. Output-Switching Phase. The Arbiter responses the routing request signals by send-

ing two signals as mentioned in phase 2. The output selection signal determines a

data from an input port that will be switched out to the outgoing port, and the rout-

ing acknowledge signal enables concurrently to read the data from the input port.

Hence, in the next cycle, the considered data will be switched out from input ports

to output ports as presented in Fig. 3.12(c).

3.3.3 Link-Level Flit Flow Control

Data flows in our NoC are controlled using a link-level flit flow control especially when

contentions between high-rate data occurs in the XHiNoC. The data flows on every com-

munication link are controlled in XHiNoC and at flit level because of the use of the flit-

by-flit rotating arbitration to switch and schedule data flow between contenting flits re-

questing the same outgoing link. The link-level data flow control is implemented using

credit-based method, i.e. when the FIFO buffer in the next input port is full, then a new

data flit will not be switched out to the outpot port, until there is a free buffer space in the

FIFO buffer.

Fig. 3.13 presents four snapshot of the link-level flit flow control used in XHiNoC. If

the contenting flits are injectedwith a very high data flow rate from the source nodes such

that the total communication bandwidth of the contenting flits exceeds the maximum

bandwidth capacity of the shared communication media, then the NoC will be saturated.

The information of network congestion (i.e. full flag signals) from FIFO buffer will trace

back to the injection nodes. The same flow control mechanism is also applied in the data

flow between the local port of the router and network interfaces. Hence, even if the NoC

is saturated, the injection rates at source nodes are automatically controlled by the full flag

signals from FIFO buffers in the Local input ports of the routers. As presented in Snapshot

3 (Fig. 3.13(c)) and Snapshot 4 (Fig. 3.13(d)), we can see that new flits are not injected in

the Local input ports of the router nodes (1,1) and (2,1) because the FIFO buffers in the

Local input ports are full.

Fig. 3.14 presents a timing diagram of the data flow when contention occurs. The fig-

ures present the flit flows of message A transmitted from West input link and message B

injected from Local input port. They compete to acquire the same outgoing link (East

Output link). We assume that each input port has two-depth FIFO queue. The figure also

presents the queues (R0 and R1) in each input port to show the contents and the signal

(full flag) states of the queues during contention. The message A is transmitted on the

West input link in every two-cycle, while the message B is injected at every one cycle (at

maximum injection rate). Because of contention, the FIFO queues will be full (the full

flag is set) at any cycle period. In the figure, the full flag of the Local FIFO queue is set in
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Fig. 3.13: Link-level flit flow control in the XHiNoC.

phase 3, 4 and 5, because the registers R0 and R1 of the Local FIFO queue are used to store

the F lit B2 and F lit B3. The F lit B1 itself in the data buffer of the routing engine (RE)

must wait for a few cycle because the arbiter in the East outgoing port has selected the

flit (F lit A1) from the West input port in phase 3 as the winner flit to access the outgoing

port. In phase 5, the arbiter selects the flit (F lit B1) from Local input port to be switched

in the East output link in the next cycle. Hence, in phase 6, the F lit B1 is switched out

in the East output link, and the full flag of the Local FIFO queue is reset back. Hence, in

the next cycle (phase 7), F lit B4 that has been waiting in the Local input port can be now

stored in the FIFO queue.

In general, the characteristic of the link-level and data flit flow control can be seen by

observing the data flow in the West input link, in the Local input port and in the East

outgoing link. In the East outgoing link, the flit flow rate is about 0.5 flit per cycle (fpc),

or one flit per two-clock-cycle (the maximum data rate in XHiNoC). We can also see that

the arbiter unit makes a flit-by-flit rotating arbitration. Because the East outgoing link is

shared in a fair manner by the flits of message A and message B, then the flit flow rates

of both messages in the West and the Local input ports experience slower rates. They

share also the maximum bandwidth capacity (0.5 fpc) of the shared outgoing link, i.e.

0.25 fpc (half of the maximum capacity) for each message, or one flit is transmitted in

every four-cycle in both West input link and Local input port.

The congestion occurs in the West input link presented in Fig. 3.14 will affect the flow

rate of the message A on the upstream links in successive clock cycles. The congestion

situation will soon reach the source node from where the message A is injected. The

injection rate reduction experienced by the message B will also occur in the source node

of the message A. Therefore, globally, the injection rates of the message A and message B

in their source nodes will be as same as their acception rates in their destination nodes,
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Fig. 3.14: Timing diagram (with contention) of the data switching and control paths.

i.e. 0.25 flit per cycle if we assume that there is no other traffics considered in the NoC.

The same mechanism is also valid in the input side of the West input link. By us-

ing the flit flow regulation mechanism mentioned before, the data flit flows at link-level

can be controlled automatically. This mechanism is also useful not only to enable the re-

duction of the buffer sizes of the FIFO queue but also can avoid data drops in the NoC.

Data dropping in the context of NoC-based multiprocessor computation can degrade the

application’s performance.

3.3.4 Saturating and Non-Saturating Conditions

Whenmessages are injected in the XHiNoC such that the total bandwidth requirement of

considered traffics on every link does not exceed the maximum link bandwidth capacity,

then the XHiNoC will not be saturated. Fig. 3.15(a) shows 4 snapshots of link bandwidth

sharing situation as well as the local ID slot reservation, where the total bandwidth re-

quirement of 4 messages is less than the maximum bandwidth capacity of the link. The

values in the brackets represent the actual percentage message bandwidth over the max-

imum NoC link capacity and the reserved ID slot (% of Max BW : local ID slot). As

presented in the figure, Message A, B, C and D are injected to the NoC with local ID-tag

0 and consuming 20% of the maximum bandwidth capacity of the NoC link, resulting in

the total bandwidth consumption of 80% of the maximum link capacity when they share

a link in the North output port at node 4 as presented in the figure. In this situation, the

NoC will be not saturated.

If a link is consumed by a few or some messages, in which the total expected band-

widths of themessages exceeds themaximum capacity of the link, then themessage flows

will be blocked for a while because of the flits’ contention. The blocking situation in the

XHiNoC is acceptable. The flow of the data flits in the congested link is constant at its

maximum rate. Thus, the contenting flits must share this maximum rate. Therefore, the
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Fig. 3.15: Four snapshots of link bandwidth sharing situation (a) when the NoC is not saturated,

and (b) when the NoC is saturated.

flow rates of the contenting flits will be slower than their expected rates. While, the in-

jection rates at their source nodes are still at their expected rate, which are larger than

the actual rates on the congested link, then the NoC will be saturated. Network Interface

(NI) at source node will then stop injecting new flit when a queue in the Local input is

full. Because of the benefit of the flit interleaving and link sharing capability, the data

flows are not blocked permanently. After a few cycle, there will be a free space again in

the queue and the NI can inject the next flit again. So, in steady-state situation, the actual

injection rates at source node should follow the actual acception rates at targeted nodes

of each communication edges in the NoC.

Fig. 3.15(b) shows the other 4 successive snapshots of the actual bandwidth consump-

tion and local ID slot reservation, where the messages are expected to be injected to con-

sume 100% of the maximum link bandwidth capacity. Initially, all messages will utilize

the maximum link bandwidth capacity. Afterwards, when they start sharing a link, their

data rate will be automatically reduced such that the total actual bandwidth of all mes-

sage is equal to 100%. In this situation, the NoC will be saturated. Because our NoC is

facilitated with the link-level flit flow control, no flit will be dropped. This congestion

state will trace back to the injection nodes such that the injection rates of all messages will

be reduced dynamically following their steady data rate point in the congestion nodes as

presented in each snapshot in Fig. 3.15(b). This phenomena will also be presented later

by observing the runtime actual injection and acception rates in the simulation results.
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3.3.5 Special Features of the XHiNoC

The XHiNoC (described in VHDL model) is the extended version of HiNoC [97], [194],

[219] (described in SystemC model). The extensions include the new microarchitecture

and some features as the contributions of this thesis that are explained in the following

points. More explanations about the points will be presented later in the next chapters.

1. Specific Wormhole Switching with Flit-Level Packet Interleaving. One of the special in-

teresting features of the XHiNoC design concept is the implementation of a unique

wormhole switching technique where flits of different messages can be interleaved

and share the same communication media based on the locally organized message

identity. As mentioned earlier, flits belonging to the same message will always have

the same local ID-tag when acquiring a communication media (network link). By

applying the flit-by-flit circulating arbitration technique, the wormhole messages

can be interleaved at flit-level because every flit brings a local ID-tag to differentiate

it from other flits of different flits. The local ID tag is updated by an ID manage-

ment unit implemented in output port. By using this kind of wormhole switching,

the head-of-line blocking problem commonly happen in the traditional wormhole

switching can be solved partially without implementing virtual channels. More in-

formation about the novel wormhole switching method will be explored later in

Chap. 4.

2. Hold-Release Tagging Policy for Deadlock-Free Multicast Routing. By using the local-

ID-based method to switch wormhole packet over the network and by using fur-

ther the flit-by-flit arbitration technique, a multicast deadlock configuration prob-

lem due to a multicast data request dependency can be solved effectively by using a

so called hold/release-tagging-basedmulticast policy implemented on everyNoC router.

The multicast conflicts, which potentially lead to deadlock configuration (multicast

dependency), are allowed and well organized by using the the multicast conflict con-

trol and management resulting in a new deadlock-free multicast routing methodol-

ogy. The multicast flow control is based on the fact that a multicast data will not

be released from FIFO buffer at input port if the set of all multicast routing requests

has not been granted to access the multiple output ports. If a subset of the requests

is granted, then the granted requests will be reset to avoid improper multicast flit

replications. Further exploration about this novel deadlock-free multicast routing

will be explained in Chap. 5.

3. Flexible Runtime Connection-Oriented Guaranteed-Bandwidth Service. The other inter-

esting consequence of the local-ID-based routing organization is the ability to imple-

ment a flexible runtime connection-oriented guaranteed-service either for guaranteed-

throughput or for guaranteed-bandwidth. The connection from a processing ele-

ment to a single partner (unicast communication) or to multiple communication

partners (multicast communication) is established at runtime. The connection, local-
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ID reservation and bandwidth reservation are made autonomously by a header flit

for a single partner or by multiple headers for multicast partners during application

execution time. Communication media can be shared very flexible by allocating

every data stream/message to a local ID slot. More explanation of this interesting

feature will be further explored in Chap. 7.

3.4 RTL Simulator Infrastructure

The main infrastructure of the RTL simulator for XHiNoC performance evaluation is the

testbench equipment module designed using VHDL. This module consists of two mod-

ules, i.e. a Traffic Pattern Generator (TPG) and a Traffic Response Evaluator (TRE)). Both

components are explained further in the following sub-sections.

3.4.1 Traffic Pattern Generator

The TPG unit is used to generate traffics that will be injected to the local input port of

the NoC. One TPG unit is connected to a local input port of one network node. There are

some parameters that can be controlled by users to generate the types, the burst sizes and

the flow rates of the traffics.

• The TPG units can generate a Unicast Best-Effort or Multicast Best-Effort packets as

well as a Unicast Guaranteed-Service or Multicast Guaranteed-Service streams. The

users can set the parameters in the VHDL testbench programs.

• The burst sizes of the generated packets or data streams can be also controlled by the

users by setting the values of burst sizes or communication volumes in the VHDL

testbench programs. The burst size values can be set uniform for all network nodes,

or unique for every network node.

• The injection rates of the generated packets or data streams can also be set by the

users by setting the injection rates values in the VHDL testbench programs. The

injection rate values can be set uniform for all network nodes, or unique for every

network node. The TPG unit can also give the transient response of the runtime

actual injection rate measurement on every active node in a certain duration deter-

mined by the users.

• The users can also automatically set the size of the network. This option is valid

only when the network structure is regular, such as the 2D N × M mesh network.

• Each message is encoded by the TPG unit such that every message can be well

identified and differentiated from other messages in the network.
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• Each flit of the message is numbered in-order by the TPG unit. Thus, it is easy for

the TRE unit to check whether any or some flits are either loose in the NoC or are

not accepted in the destination node.

3.4.2 Traffic Response Evaluator

The TRE unit is used to analyze the ejected/accepted/incoming data flits from the local

output port of the NoC. One TRE unit is connected to a local output port of one network

node. The following items will explain in general the functionality of the TRE units in

our VHDL-based RTL simulator infrastructure.

• Each TRE unit at destination node will check the header of a packet, and analyzes

whether the accepted packet is correct (the packet has attained its destination node

correctly). The TRE unit counts how many clock cycles the header needs to attain

the destination node. In this simulation, we interpret the latency metric as the num-

ber of clock cycles to transfer a flit from its source to its destination node.

• For each accepted flit, the TRE unit will check again one by one the order and the

packet code of every accepted flit. Q number of flits or equivalent to Q × 4 Byte =

4Q Bytes messages are injected from the TPG units at each injector (data producer)

node.

• The TRE units will give some information, i.e. how many clock cycles that are re-

quired to transfer an amount number of flits, for examples, the 500th, 1000th, 2000th,

3000th, 4000th, 5000th, 6000th, 7000th, 8000th, 9000th and the 10000th flits for each com-

munication partner (source–destination pairs).

• The TRE units will write the simulation results into output text files. The gener-

ated text files are e.g. the communication bandwidth measured in Mega-Byte per

second (MB/s) for each communication pair (source–destination pair) and the av-

erage value of the overall communication bandwidths of the considered communi-

cation pairs. The tail flit acceptance latency measured in clock cycle period for each

communication pair (source–destination pair) and the average latency of the over-

all communication latency of the considered communication pairs are also written

into output text files. The latency in clock cycle period to accept the header flits,

response flits and the first payload flits, as well as the tail flits for different number

of the injected flits are also reported in by the TRE units.

• The TRE unit can also give the transient response of the runtime actual acceptance

rate measurement on every active node in a certain duration determined by the

users.
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3.4.3 Performance Evaluation Graphs

Based on the features of the TPG and the TRE units attached on the RTL-Simulator In-

frastructure of the XHiNoC, there are some graphs that can be depicted to show the per-

formance evaluation results of the XHiNoC. The graphs are described in the following

items.

• 2D graph of the the last flit transfer latency vs injection rate. This graph will present the

acceptance of the last flit of each communication pairs when the expected rate of the

data injection at each source node is increased or decreased. In general, the average

last flit acceptance delay of all communication pairs over the expected data injection

rate changes can be also presented in a graph. This type of graph is commonly used

to evaluate NoCs performance as exhibited in [182] and [18].

• 2D graph of the the last flit transfer latency vs workloads. This graph will present the

acceptance of the last flit of each communication pairs when the number of injected

data flits at each source node is increased or decreased. In general, the average

last flit acceptance delay of all communication pairs over the number of workload

changes can be also presented in a graph.

• 2D graph of the communication bandwidth vs injection rate. This graph will present

the actual (real) measured communication bandwidth (throughput) of each com-

munication pairs when the expected rate of the data injection at each source node

is increment or decrement. In general, the average real throughput of all communi-

cation pairs over the expected data injection rate changes can be also presented in a

graph.

• 2D graph of the communication bandwidth vs workloads. This graph will present the

actual (real) measured communication bandwidth (throughput) of each communi-

cation pairs when the number of injected data flits at each source node is increased

or decreased. In general, the average real throughput of all communication pairs

over the number of workload changes can be also presented in a graph.

• 3D graphs of the link and bandwidth occupancy. These graphs will present the link

occupancy represented by the number of reserved ID slots and reserved bandwidth

space at each output port of the NoC routers. In general, the total outgoing link

occupancy of all output ports can be presented in a graph. This graph is interesting

to see hotspots in a 2D network topology.

• 2D graphs of the injection and acceptance rate transient response. These graphs will

shows us the transient responses of the actual injection rate at a source node and the

acceptance rate at a destination node measured at runtime during certain time pe-

riod at certain active nodes, which are determined by the users. From these graph,

we can see the time responses of each communication partner and analyze their

steady state points compared to the expected data rates of each communication.
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3.5 Summary

The main issue related to the implementation of the local ID management technique is

the available ID slots on each communication link. If the parameterizable ID field on

each flit is set to 4 bits, then a maximum number of 16 packets (24) can be in flight on the

same link. The number of available ID slots can be increased by increasing the number

of ID field bits as presented in the packet format, resulting in an increase of the routing

table size and ID slot table size in the ID management unit. The number of required

ID slots is application-dependent and cannot be increased anymore if the NoC had been

implemented on ASIC. Hence, an optimal post-manufacture application mapping should

be made, in order to avoid more than 16 packets interfering with each other across the

same link.

In Chip-level Multiprocessor (CMP) systems running a coarse-grain multiprocessing

applications, i.e. the ratio between computation to communication is more than one, it

seems that 16 ID slots per channel are enough to run several applications. But, if the com-

putation to communication ratio is less than one (fine-grain), then the number of avail-

able ID slots per channel must be taken into account. Programmers must ensure that each

channel will not be overloaded with excessive communication traffics. This effort can be

easily done especially when an explicit parallel programming model is considered. The

problemmay appear when we use implicit parallel programming models such as shared-

memory and multithread programming models. Therefore, it is reasonable to anticipate

the ID run out problem in the CMP systems by setting the minimum acceptable number

of ID slots per link and setting the number of available ID slots at each local output port

equal to the number of the processing element cores. This issue has been well addressed

in Section 3.1.2.

Fortunately, in the context of embedded Multiprocessor System-on-Chip (MPSoC),

applications traffic patterns are predictable. Hence, it is possible in this case to map the

application in the NoC-platform in such a way that every considered traffic will be able to

reserve one ID slot per link to perform its data communication with fulfilled bandwidth

requirement. Although it would be a rare case that more than 15 messages are in-flight in

the same link, it is however a good decision if the packet dropping mechanism is applied

in this case to avoid data flow stall. If the number of ID tags per link Nslot is set to cover

all considered traffics, e.g. equal to Equ. 3.1 when using a minimal adaptive routing algo-

rithm, then the packet dropping mechanism can be neglected. There is a design trade-off

in this aspect. By setting the minimum number of ID slots (Nslot) per link as discussed

in Section 3.1.2, the size of the RRT and ID Slot Table units would be larger, but there is

no need for a retransmission protocol. When data dropping is applied and the number

of entries in the tables units is reduced, then router size will be smaller, but the retrans-

mission protocol must be applied leading to area overhead in the network interface, and

probably time overhead when the data drop occurs.
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Head-of-line blocking problem is a main issue when messages are routed in a network

using traditional wormhole switching. The problem will be theoretically and virtually

explained in Section 4.1. This chapter proposes a wormhole cut-through switching method

that can solve the head-of-line blocking problem by interleaving different messages at

flit-level in the same buffer pool without using virtual channels. The novel switching

method suitable for NoCs will be described in Section 4.2. Section 4.2 will show also

the specific packet format used in the router as the key factor to implement the pro-

posedwormhole switching, describe the formalism to prove the correctness of the routing

method, and present the performance characteristics of the router during saturating and

non-saturating condition.

Section 4.3 presents the experimental results under several traffic scenarios. The de-

sign customization method to optimize the logic area of the router is presented in Sec-

tion 4.4. Section 4.5 exhibits the synthesis results of the XHiNoC routers with fully IO

and custom-made IO interconnects. Section 4.6 will discuss some issues related to the

proposed wormhole switching method.

4.1 Blocking Problem in Traditional Wormhole Switching

Wormhole switching has been widely used for NoC routers because of the need for

smaller size buffers compared to store-and-forward switching scheme. In the wormhole

switching, each packet is divided into a sequence of flow control digits (flits). The header

flit of each packet makes a routing direction on each node and reserves a set of routing

paths, while the payload flits will follow the path set up by the header flit. The tail flit of

each packet at the end will then terminate the reservation. Unfortunately, the main prob-

lem of this traditional wormhole switching method is a head-of-line blocking problem. If

the header flit is blocked then it will also block the remaining paths that are still used by

the wormhole packet.

Fig. 4.1 shows two snapshots of a blocked data flow of the traditional wormhole

packet switching. The wormhole packets A, B, and C will be routed to node (3,1) and

their data flow rates are very high (probably they consume high bandwidth capacity). If

the packet C is not blocked and continuesly moves to the next requested output port, then

packet A and B will be blocked until the entire flits of the wormhole packet C have been

passed on, and the last flit of the wormhole packet C has removed the link reservation.

Each wormhole packet can acquire the link after the other packet finishes forwarding its

last flits.

In Snapshot 1 of the figure, if the wormhole packet C is blocked at node (3,1) because
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Fig. 4.1: Head-of-line blocking problem in wormhole switching.

the required link is acquired by another packet for instance, then Packets A and B would

be also blocked at node (1,1) and (2,1). If the size of a packet, which is blocking the flow

of the packet C is very large, then the blocking situation will also occur for long time. If

the wormhole packet size is set small, e.g. 4 flits, then we can estimate the situation in the

Snapshot 2 of Fig. 4.1 that packet A and B will escape from the blocking situation after a

few cycles.

As presented of the Snapshot 2 of the figure, because the depth of the FIFO buffers are

two, then in the blocking situation, the last two flits (flit C3 and C4) of the 4-flit wormhole

packet C can occupy two FIFO buffers at West input port of the router node (3,1). Thus,

packet A can occupy the West port FIFO at node (2,1). If the FIFO depth is set to small

number of M registers (e.g. 4,6 or 8), and the size of the wormhole packet is limited to M

flits, then a buffered wormhole packet switching scheme can be implemented in this context.

This switching scheme is actually similar to the virtual cut-through switching. However,

this switching technique can only solve any blocking situations partially. The wormhole

switching is used to minimize the buffer size in routers. Hence, this technique, which

requires larger buffer size, waives the objective of using the wormhole switching.

The head-of-line blocking problem can also be solved by using virtual channels. How-

ever, the main criticism of the use of virtual channels in the NoC context is prohibitive

area cost in terms of buffering and slower speed of router cycle time. Virtual channels

will increase total buffer counts and result in power consumption that would exceed the

target constraint for an embedded application [103]. The silicon area of a NoC router is

dominated by buffers. Hence, power is mostly dissipated from these buffer components.

The design of NoC router with minimum buffer size would be always an important as-

pect for NoC-based embedded multiprocessor systems-on-chip (MPSoC), whose power

supply capacity is limited by the battery life of the system. However, the minimum buffer

size would also be an interesting design parameter for chip-level multiprocessor (CMP)

systems domain, especially if network size is very large, in which the power dissipa-
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Fig. 4.2: Head-of-line blocking problem solution with 2 virtual channels per input port.

tions are scaled up by the network size. The work in [204] has found that additional VCs

do not increase router cycle time because the router complexity slows down the router

working period. Virtual channels will also add more arbitration to router’s critical path,

potentially affecting the cycle time or pipeline depth of the router [87]. The same result

is presented in [12], in which additional arbitration and multiplexing circuits for VCs on

physical channels introduce delays into the critical path in implementing alternate rout-

ing algorithms.

Fig. 4.2 shows the solution of the head-of-line blocking problem by using 2 virtual

channels per input port. As presented in the figure, the packet B will not be blocked by

packet C, since it uses the other virtual channel buffer at the West input port in the net-

work node (3,1). However, packet A is still blocked in the network node (2,1) because all 2

virtual channels in the network node (3,1) are busy (occupied by packet B and packet C).

The problem can be further solved by inserting a new virtual channel buffer in the router

input port. It seems that the more virtual channels are inserted to the router, the more

wormhole packets can share the same communication link, which can give a very signifi-

cant impact on the NoC area overhead. The following subsection will show how the link

can be shared by the wormhole packets by using local ID slot which replaces the VC-ID

functionality and denies the use for virtual channels accordingly.

4.2 The Novel Wormhole Cut-Through Switching Method

The head-of-line blocking problem that mainly occurs when using the traditional worm-

hole switching method can be solved without the need for virtual channels by using the

proposed flit-level interleaving wormhole switching method that is implemented in the

XHiNoC router. The use of virtual channel ID is replaced by the use of variable local ID

in the context of our proposed method. In general, the purpose of using variable local ID

and virtual channel ID is the same, i.e. to solve the head-of-line blocking problem. The

functionality of virtual channel controller units used in the context of the virtual channel

solution is implicitly replaced by local ID management units implemented on our NoC

router.
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4.2.1 Virtual-Channelles Solutionwith ID-basedMultiple Access Tech-

nique

Fig. 4.3 depicts the concept of the novel wormhole switching method, in which flits of

different messages/data streams can be interleaved (virtually mixed-cut-through at flit

level). The novel method is supported by the existence of an ID slot table and and a rout-

ing reservation table on every communication link connecting an input port of a router

with an output port of another router. In Fig. 4.3, we can see a communication link Li,j

connecting the East output port of router Ri and the West input port of router Rj . At the

East output port, there is a local ID slot table with a number of H ID slots, and at the west

input port, there is a routing reservation table with a number of H routing direction slots

as well.

The regulation of the switching method is based on the fact that an ID tag number is

attached on each flits of message, where the flit allocated to local ID slot k in the ID slot

table will have a local ID tag k, and flits belonging to the same messages will have the

same local ID-tag. In other words, a flit brings a data word together with a local ID-tag

number. The ID slot table consists of H +1 programmable slot registers. A new incoming

flit (header flit) of a message/data stream can reserve one local ID slot, and index the

reserved local ID slot number based on two local information, i.e. its previous (old) local

ID tag and from which port it comes. Fig. 4.3 shows that messages A, B, C and D coming

from North (N(2)), West W (3), South S(4) and Local L(5) port, respectively, are allocated

to local ID slots 0, 1, 2 and 3, and use the slots as their new ID tags, respectively. The

combined alphabetical and numerical symbols A:0, B:2, C:1, D:0 in the router Ri means

that the messages A, B, C and D have ID tag 0, 2, 1 and 0, respectively when they are

buffered at input ports N , W , S and L. The ID slot number 0 for example is reserved by

message A, and is indexed with tag 0 and port N (North), because the flits of message A

come from the North port with the previous ID-tag 0.

By indexing the local ID slots based on the aforementioned two local information, one

local ID slot can be allocated for only one message, and different messages can be guaran-

teed to be allocated to different ID slots. As presented in Fig. 4.3, on the communication

link Li,j and at the West input buffer of the router Rj , the flits of messages A, B, C, D

can be multiplexed and flow through the link with new local ID-tags (A:0, B:1, C:2, D:3).

When the flits of the messages are buffered in the input ports, then the flits will be routed

to their requested routing direction based on their current local ID-tags. The proof of

the correctness of the ID-based routing methodology for the novel wormhole switching

technique will be exhibited in Section 4.2.3.

As presented in the figure, four routing registers of the routing reservation table at the

West input port have been programmed with different output directions, i.e. the routing

register numbers 0, 1, 2 and 3 have been written with the output directions S, L, N and E,

respectively. Routing engine at input port can route each flit with an attached ID-tag to

an output port direction by reading the ID-tag k of the flit and fetch the output direction
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Fig. 4.3: Local ID-based Data Multiplexing.

from the register number k of the routing table. Message A for example has local ID-tag

0 at the West input port of the router Rj , thus it fetches the routing direction by reading

the register slot number 0 (according to its ID-tag) of the routing reservation table. As

presented in Fig. 4.3, the table content in the register number 0 of the routing reservation

table is S (South output routing direction). Therefore, the flits of message A are routed to

South (S) output port in the router Rj.

As presented in Fig. 4.3(b), two example cases are exhibited. The first case (upper fig-

ure) shows a flit interleaving where the total bandwidth consumption of all messages are

100% of the maximum link bandwidth capacity (Bmax), i.e. each of 4 messages consumes

25% Bmax. The second case presents that 57.5% of the Bmax have been consumed by all

packets, i.e. packet A is 20%, and packet B, C and D are 12.5% Bmax, respectively. Thus,

there is still 42.5% free BW that can be used by other wormhole packets coming to the

link.

The mechanisms to reserve a local ID slot from the ID slot table and to program a

routing output direction in the routing reservation table by the wormhole packets are

made at runtime during application execution time. Therefore, the XHiNoC uses a special

packet format for the wormhole packets by introducing a flit type bit field (beside the ID-

tag bit field) in every flit of the wormhole packets to enable suchmechanisms as explained

later in Section 4.2.2.
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Fig. 4.4: (a) Comparisons of multiple-packet-based and single-packet-based message assembly,

and (b) the XHiNoC packet format.

4.2.2 Packet Format

A message in XHiNoC is associated with a single packet. For a unicast message, the

packet will have only one header flit, even if the size of the message is very large. Hence,

in this paper, the terms “packet” and “message” have similar interpretation. Fig. 4.4(a)

presents the difference between amultiple-packet-basedmessage assembly (Fig. 4.4(a)(a))

and a single-packet-based message assembly (Fig. 4.4(a)(b)) that is used by our NoC. In

the multiple-packet-based assembly, the message is divided into Q number of packet,

where the size of each packet (Spck) can be freely determined. Each packet consists of a

header containing routing information or the address of the destination node and a few

payload flits. The control bits can be optional, e.g. when the first payload of each packet

represents the number of payload flit per packet then the control bit can be neglected. But

when all payload flits in each packet represent a data, then the control bits can be used to

determine the type of each payload data in each packet.

If adaptive routing algorithms are used to route the large-size multiple-packet-based

message containing large number of packets, then an out-of-order problem may occur at

each destination node. This is because the headers of each Q number of packets (Head 1,

Head 2 until Head Q), which are routed adaptively in the NoC, may arrive at the desti-

nation node with different order as they injected from the source node. Because of that
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problem, our XHiNoC uses an alternative message assembly, i.e. single-packet-based

format shown in Fig. 4.4(a)(b). Moreover, the single-packet-based format, in which addi-

tional control bits are attached on each flit, is the key factor to implement the wormhole

switching capable of interleaving message at flit-level in order to solve the head-of-line

blocking problem.

The detail packet format and the control bits used in the XHiNoC architecture is pre-

sented in Fig. 4.4(b). The message is split into several flits and has 39-bit width, 32 bits

for dataword plus 7 extra bits i.e., 3-bit field to define the type of flits and 4-bit field to

determine the local identity label or ID-tag of the message. The ID-tag field is set 4 bits,

resulting in 16 available ID-tag which conforms to the number of available ID slots on

every communication link.

For the NoC version with Best-Effort (BE) service, the flit type can be (1) a header flit

(Head), (2) a databody (payload) flit (DBod), or (3) a tail (end of payload data) flit (Tail).

The other possible flit types can be introduced for the NoC version with Guaranteed-

Throughput (GT) service, or combination of both BE and GT services. Routing direction

on each router is made only once by the packet header. Afterwards, the payload flits

(probably a very long data stream) will track the routing paths made by the header. By

using the packet format shown in Fig. 4.4(b), out-of-order problem can be avoided when

we use an adaptive routing algorithm.

The message is classified into three flit types i.e., header flit (Head), databody or pay-

load data flit (DBod) and tail flit (Tail). The source and target addresses of the message

are defined into 3D address (x, y, z). The z address is not used in this current 2D mesh

topology but it is spared to be used for developing a hierarchical 2D, or stacked 3D net-

works on chip. The header flits are introduced to autonomously make the local ID slot

reservation in the ID slot table and the routing direction reservation in the routing reser-

vation table on every XHiNoC router. Flits belonging to the same message have the same

local identity number (ID-tag) to differentiate it from other flits of different messages,

when it passes through a communication link of the NoC. The ID-tag of the data flits of

one message will vary over different communication links allowing different messages

are interleaved each other at flit-level while being routed with wormhole switching.

4.2.3 Correctness of the Routing Path Establishment

Lemma 4.1 By organizing the ID-tag of each flit of packets using Alg. 9 with local ID Slot Table

defined in Def. 3.19, then we can guarantee that flits belonging to the same packet will always

have similar local ID-tag k ∈ Ω on each communication link Li,j ∈ Λ.

Proof of Lemma 4.1 Based on Def. 3.4 and Def. 3.19, we can see that the local ID slot k ∈ Ω is

indexed by using two variables i.e. the ID-tag ID ∈ Ω of a message from an input link and from

which port n ∈ Φ the message come. Further, we define Fn(type, ID) as a flit from input port n

with local ID-tag ID.
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If we make a pre-assumption, that every single Id slot k is allocated for every flit of similar

message on every link Li,j connected to an input port n, then (∀v, w ∈ Ωi,j) ∩ (v 6= w), a flit

Fn(type, v) will not belong to a similar message with Fn(type, w), where Ωi,j is the set of local ID

slots on the link Li,j. ∀p, q ∈ Φ ∩ p 6= q, there is a probability that Fp(type, v) and Fq(type, w)

have similar local ID-tag (v = w), because the sets of local ID Slot on each communication link is

the same. But certainly Fp(type, v) and Fq(type, w) are flits of different packets, although v = w,

∵ p 6= q. If every single ID slot k is assigned to a new packet by identifying two parameters

i.e., from which port the packet come and its current old ID-tag, we can make sure that (∀x, y ∈

Ω) ∩ (x 6= y) ⇒ S(x) = (v, p) 6= S(y) = (w, q) according to Equ. 3.7, ∵ ∀p, q ∈ Φ: p 6= q,

or if p = q (ports connected to the same link Li,j) then v 6= w, ∀v, w ∈ Ωi,j according to the

pre-assumption. x and y is the new id-tags for flit Fp(type, v) and Fq(type, w), respectively

Therefore, by further applying a local ID-tag management described in Al. 9, we can make sure

that each different message can be allocated to one ID slot k ∈ Ω and guarantee that flits belonging

to the same packet can be assigned to a similar local ID-tag k ∈ Ω on each communication link.

Accordingly, the proof makes also the aforementioned pre-assumption to be a valid assumption

continuously on every communication link.

Lemma 4.2 By using ID-based routing mechanism as described in Alg. 7 and organizing the ID-

tag of each flit of packets as described in Alg. 9, then each flit belonging to the same packet can

be routed to a correct routing direction rdir ∈ D although the flits are interleaved with other flits

that belong to other different message by applying the rotating flit-by-flit arbitration described in

Def. 3.16.

Proof of Lemma 4.2 Based on the Proof of Lemma 4.1, if we have proved that different packets

can be allocated to different local ID Slot such that flits belonging to the same packet will always

have similar local ID-tag, then by implementing ID Slot Table at every outgoing port such that if

∃ Sk, S(k)|k ∈ Ω on each communication link Li,j ∈ Λ connecting routing node Ri, Rj ∈ ℜ, then

we can also further implementing a Routing Table T (k) (Def. 3.11) at every incoming port, which

routes flits of packets based on their ID-tag k in such a way that the interleaved different flits can

be correctly routed into their correct paths.

4.2.4 Switching Behaviors in Saturation and Non-Saturation

Saturating and non-saturating conditions in interconnection networks are two situations

that could be used to represent the performance characteristics of a network. The capa-

bilities of a network to handle both situations represents an advantageous characteristic

of the network. When any or some packet flows are blocked in the network, then satu-

ration condition will happen. The blocking situation occurs because the data rate of any

or some packets exceeds the maximum bandwidth capacity of the used communication

resources. In Section 3.3.4 and Section 3.3.3 of Chap. 3, the performance characteristics

of the XHiNoC under saturating and non-saturating conditions as well as the overflow

control mechanism during blocking situation have been described well.
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Fig. 4.5: Switching behavior in saturation.
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Fig. 4.6: Switching behavior in non-saturation.

In this subsection, the XHiNoC capability to tackle the blocking and non-blocking sit-

uations by using the novel wormhole switching method will be explored in detail. Fig. 4.5

shows five snapshots of the communication link sharing between three wormhole pack-

ets. Each packet is injected from a source node with maximum injection rate, i.e. consum-

ing 100% of the maximum bandwidth capacity of the XHiNoC link. In this situation, the

NoC will become saturate when the wormhole packets compete each other to share the

same outgoing link as presented in the figure. The flits of packet C are contenting with the

flits of packet A to acquire the East outgoing link in the router node (1,1), while the flits of

packet B are competing with the flits of packet C to use the East outgoing link in the router

node (2,1). The first, the second and the third flits (C1 : 0, C2 : 0 and C3 : 0) of packet C

have been routed firstly, and each of them is allocated with local ID-tag 0. The flits have

acquired the West input buffer of the router node (3,1), (2,1) and (1,1), respectively.

As presented in Snapshot 1 of Fig. 4.5, the first flits of packet A (A1 : 0) and packet B

(B1 : 0) come later in North input buffers of the router node (1,1) and (2,1), respectively.

Due to the use of a the flit-by-flit rotating arbitration as described early in Section 3.2.3
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of Chap 3, then in Snapshot 2, the flit B1 : 0 from North input port of router node (2,1)

is selected and allocated to local ID tag 1 to use the East outgoing link, and the flit A1 :

0 from North input port of router node (1,1) is selected and allocated to local ID tag 1

to acquire the East outgoing link. Now, we can see that the flits of different wormhole

packets are being interleaved with different local ID-tags.

In the next snapshots, the situations in every input buffer can be easily estimated.

The arbiter units at the East output ports of the router node (1,1) and (2,1) alternate their

selection betweenWest and North input ports. When the first flit of a packet (a header flit

of a new packet) acquires the shared links, then the packet will be allocated to a new free

local ID slot. For example, the wormhole packet A in Snapshot 3 is allocated to local ID

slot 1 in the West input port of the router node (2,1), because ID slot 0 has been used by

packet C.While, in theWest input port of the router node (3,1) as presented in Snapshot 5,

packet A is allocated to local ID slot 2 because local ID slots 0 and 1 have been used by

packet C and packet B.

If the output selection results at the East outgoing link in the router node (2,1) are

analyzed on each snapshot, then we can see that packet B consumes the outgoing link

more frequent than the other two packets. Packet A and packet B fairly share the outgoing

link between the router nodes (1,1) and (2,1), because the arbiter unit at East outgoing

link in the router node (1,1) circulates fairly the arbitration between flits coming from

West and North output ports. Hence, packet A and C consumes respectively 50% of the

maximum bandwidth capacity of the link. In the next router node (2,1), both packets A

and C compete again with packet B to share the link between the router node (2,1) and

(3,1). Therefore, in the same situation, packet B coming from North input port consumes

50% of the maximum link bandwidth capacity, while the rest bandwidth space is shared

by packet A and C, which come from West input port. It means that packet A and C

share 25% bandwidth space of the link. This condition has been also well explained in

Section 3.3.4 of Chap. 3.

Fig. 4.6 presents three snapshots of another communication media sharing between

three wormhole packets, where each packet is injected from a source node to consume
1
3
or 33.33% of the maximum link bandwidth capacity. At West input port in the router

node (3,1) of each snapshot, we can see that the link can be shared fairly by packets A, B

and C. The total bandwidth consumption of the 3 wormhole packets is 100% (i.e. about

3×33.33%). Compared to the other situation presented in Fig. 4.5 in advance, the fairness

of the communication media share is better andwell-depicted. Fig. 4.7 exhibits the output

selection results made by the arbiter unit at East output port of the router node (2,1)

between flits of packet A, B and C.
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Fig. 4.7: Flits output/outgoing selection results at East output port in the router node (2,1).

4.3 Experimental Results

In this section, the XHiNoC is clocked with 1 GHz. Hence, the maximum bandwidth

capacity of each communication link is B
(1 GHz)
max−ℓ = 4 Byte × 1 GHz × 1

2
= 2 GB/s or

2000 MB/s. By using the number of flits per cycle (fpc) unit, the maximum data rate of

every link is 0.5 fpc. Thus, 0.5 fpc is equivalent to 2000 MB/s. If we have data rate R

in fpc, where 0 < R ≤ 0.5 fpc, then we have the relevant bandwidth rate B = R ×

4000 MB/s, such that 0 < B ≤ 2000 MB/s.

4.3.1 Bit Complement Traffic Scenario

This subsection presents the performance of our XHiNoC over the bit complement traf-

fic pattern under 4x4 mesh planar topology, in which a message is injected from source

node with a binary address and will be accepted in the target node bit complementary

of the binary source address. For example, if a packet is injected from node (1, 3), where

its binary address is (01, 11), then the packet will be accepted at node (10, 00) in binary

code address or node (2, 0) in decimal code address. In the 2D 4x4 mesh with the bit

complement traffic, we will have 16 node communication pairs (16 node as injector and

as acceptor node at the same time).

Fig. 4.8, Fig. 4.9 and Fig. 4.10 will present the XHiNoC unique behaviors in response to

the bit complement traffic pattern under saturated and non-saturated conditions. Fig. 4.8(a)

shows the measurement of the average latency to transfer the tail flit (end of payload flit)

from source to target node for different numbers of the total injected flits per data pro-

ducer node and different injection rates (IR) in flit per cycle (fpc). The average tail flit

latency is δavg = 1
16

∑16
k=1 δk, where δk is the latency of the communication pair k in the bit

complement traffic scenario.

Fig. 4.8(c) shows also the measurement of the average bandwidth over different num-

bers of the total injected flits per message. The average bandwidth is Bavg = 1
16

∑16
k=1 Bk,

where Bk is the actual/measured bandwidth of the communication pair k in the bit com-

plement traffic scenario. It looks that for similar injection rate, the average actual/measured

bandwidth rate is constant although the communication volumes are changed from 500
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Fig. 4.8: Latency and bandwidth measurements in bit complement traffic scenario.

flits to 10000 flit per data producer node. The average transfer latency also increases

linearly when the total number of injected flits is increased in this scenario even when

the NoC is saturated. This behavior is unique compared with the traditional wormhole

switching method because of the link sharing and flit interleaving capability as well as

the mechanism to control dynamically the injection rate when the NoC is saturated.

Fig. 4.8(b) and Fig. 4.8(d) show the average latency and average actual bandwidth

respectively over different requested bandwidth rates when 10000 number of flits per

message are injected from every data producer node. By using static XY routing, there

is a saturated latency start, when the requested bandwidth rates increases from a start-

ing value of 1000 MB/s (0.25 fpc). While, by using adaptive West-First routing, the la-

tency start being saturated, when the requested bandwidth rates increases starting from

666.67 MB/s (0.1667 fpc). Due to the existing mechanism which dynamically control the

injection rates, the term expected/requested bandwidth rate or injection rate setpoint is differ-

ent from the actual/measured injection rate. The former is assumed constant while the latter

changes in accordance with the NoC saturation condition. Therefore, in the saturation

condition, the injection rate at a source node as well as the acceptance rate at its target

node changes dynamically to a certain stable rate or swings around a fixed acceptable

rate.

Fig. 4.9(a) and Fig. 4.9(b) present the transient response observation/measurement of

the injection and acceptance rate of two selected communication pairs, i.e. Com 1 and
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Fig. 4.9: Measurement of the actual injection and acceptance rate at two selected communication

pairs using static XY routing.

Com 1 respectively by using the static XY routing algorithm. Com 1 is the communica-

tion edge from node (0,0) to node (3,3), while Com 2 is the communication edge from

node (2,3) to node (1,0). As presented in the figure, the injection setpoint is 0.2 fpc or

similar to 800 MB/s. If we check again the NoC latency and bandwidth behaviors over

different required bandwidth rate depicted in Fig. 4.8(b) and Fig. 4.8(d), then we can see

that the NoC is not yet saturated when messages are injected with bandwidth rate of

800 MB/s while using static XY routing. Hence, the injection and acceptance rates will

simply follow the injection rate set point. Meanwhile, if the messages are injected with

0.333 fpc or similar to 1333.33 MB/s, then according to Fig. 4.8(b) by using static routing,

this data rate will make the NoC being in saturated condition. Therefore, as presented in

Fig. 4.9(c) and Fig. 4.9(d), the injection and acceptance rates of the Com 1 and Com 2 are

stable at 0.25 fpc point or lower than the requested injection rate setpoint.

Fig. 4.10(a) and Fig. 4.10(b) also present the same non-saturated condition when using

the adaptive West-First routing algorithm. As presented in figure, the requested injection

rate setpoint is 0.125 fpc or 500 MB/s. In accordance with Fig. 4.8(b) and Fig. 4.8(d), at

500 MB/s requested bandwidth rate, the NoC is not yet saturated when using adaptive

West-First routing. Hence, both the injection and acceptance rates of theCom 1 andCom 2

will be stable at 0.125 fpc. However, if the requested communication rate setpoint is

0.2 or 800 MB/s as presented Fig. 4.10(c) and Fig. 4.10(d), then the NoC is saturated.
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Fig. 4.10: Measurement of the actual injection and acceptance rate at two selected communication

pairs using minimal adaptive West-First routing.

Therefore, the average injection and acceptance rates will be lower than the requested

communication bandwidth. At initial clock cycles, the injection rate follows the requested

injection rate. However, the injection rate at the source node follows the actual measured

acceptance rate at the target node and fluctuates within a fixed average rate towards the

end.

4.3.2 Hotspot Traffic Scenario

In this subsection, the NoC performance is simulated under hotspot traffic pattern, in

which all nodes send a message to a single hotspot node, i.e. node (3,3). So, this node will

receive all messages from all other 15 source nodes. Hence, there are 15 communication

pairs in this scenario.

Fig. 4.11(a) and Fig. 4.11(c) show the NoC average latency and bandwidth behaviors

over variable numbers of injected flits per data producer node andwith different injection

rate for the hotspot traffic scenario. If the messages on each source node are injected with

lower injection rate, then the NoC will be not saturated. In the non-saturated conditions,

the performance of the NoC prototypes with the static XY and adaptiveWest-First routing

algorithms will be similar.

Fig. 4.11(c) and Fig. 4.11(d) present the NoC average latency and bandwidth responses
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over different requested injection or bandwidth rates. There is a different NoC character-

istic presented in Fig. 4.11(d), when the total number of injected flits per source node is

different. For instance, when we select the total number of 500 and 10000 flits per data

producer node. If the number of injected flits is 500 flits, then the average bandwidth

starts at a saturated bandwidth of 133.33 MHz. We can observe that the number of mes-

sages sharing the local output port of the target node (3,3) is 15 messages. Since the

maximum capacity of the outgoing port is 2000 MHz, then the average actual/measured

bandwidth is 2000
15

= 133.33 MHz. However, if the number of injected flits is 10000 flits per

producer node, then the saturation point moves to a higher rate. Based on our observa-

tion in the our cycle-accurate RTL simulation, the last flits of some producer nodes located

nearby the target node (3,3) are accepted early, while the other producer nodes far from

the target node (3,3) are still injecting their payload flit. Therefore, the curves presented

in Fig. 4.11(c) and Fig. 4.11(d) will be exponentially reduced from the 133.33 MHz point

until they reach the bandwidth saturation point. We call the the area in the exponentially

reduced curves as the exponential region.
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Fig. 4.11: Latency and bandwidth measurements in hotspot traffic scenario.

Fig. 4.12(a) and Fig. 4.12(b) present the injection rate and acceptance rates of two se-

lected communication pairs in the hotspot traffic scenario by using the static XY routing

algorithm. Com 1 is a communication edge that is transferring data from node (2,2) to

node (3,3), while Com 2 is a communication edge that is transferring data from node (1,1)

to node (3,3). The requested injected setpoints from the source nodes are 0.04 fpc or simi-
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lar to 160 MB/s. According to Fig. 4.11(b) and Fig. 4.11(d), this requested bandwidth will

make the NoC be in the exponential region. Therefore, as presented in the Fig. 4.12(a) the

injection rate of Com 1 can follow the expected injection rate setpoint, while its acceptance

rate in the target node swings around the expected injection rate setpoint. Fig. 4.12(b)

shows the transient responses of the injection and acceptance rate of the Com 2. It looks

that the rates are reduced and fluctuates within certain lower rates than the expected rate.

Fig. 4.12(c) and Fig. 4.12(d) shows the other transient responses by using adaptive

West-First routing in which the expected injection rate is 0.05 fpc or similar to 200 MB/s.

We can see that the injection and acceptance rates of Com 1 as shown in Fig. 4.12(c) will be

stable at the expected rate. While the injection and acceptance rates of Com 2 as shown in

Fig. 4.12(d) will be reduced to about 0.025 fpc. The expected 200 MB/s data rate makes

the NoC also be in the exponential region according to Fig. 4.11(b) and Fig. 4.11(d).
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Fig. 4.12: Measurement of the actual injection and acceptance rate at two selected communication

pairs using static XY and minimal adaptive West-First routing.

4.3.3 Matrix Transpose Traffic Scenario

Fig. 4.13(a) and Fig. 4.13(b) show the NoC average latency and bandwidth behaviors over

variable numbers of injected flits per data producer node and with different injection

rate for the matrix transpose traffic scenario. If the messages on each source node are

injectedwith lower injection rate, then theNoCwill not be saturated. In the non-saturated
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Fig. 4.13: Latency and actual bandwidth measurements in transpose traffic scenario.

conditions, the performance of the NoC prototypes with the static XY and adaptive West-

First routing algorithms will be similar.

Fig. 4.13(b) and Fig. 4.13(d) show the average latency and average actual measured

bandwidth respectively over different requested bandwidth rates when 10000 number of

flits per message are injected from every data producer node. As presented in the figure,

the performance of the NoC prototypes are similar for the static XY and adaptive West-

First routing algorithms, when the data are injected less than about 666 MB/s (0.333 fpc).

If the injected rates are increased faster than the abovementioned value, the performance

of the NoC prototype with the adaptive West-First routing algorithm is better than the

static XY routing algorithm.

4.3.4 Perfect Shuffle Traffic Scenario

Fig. 4.14(a) and Fig. 4.14(b) exhibit the NoC average latency and bandwidth behaviors

over variable numbers of injected flits per data producer node and with different injection

rate for the perfect-shuffle traffic scenario. In the perfect shuffle data distribution scenario,

the performance of the NoC prototypes with the static XY and adaptiveWest-First routing

algorithms are similar both in the saturated and non-saturated conditions.

Fig. 4.14(b) and Fig. 4.14(d) show the average latency and average actual measured

bandwidth, respectively over different requested bandwidth rates when 10000 numbers
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Fig. 4.14: Latency and actual bandwidth measurements in perfect shuffle (1-bit left-rotate) traffic

scenario.

of flits per message are injected from every data producer node. As presented in the

figure, the performance of the NoC prototypes are similar for the static XY and adaptive

West-First routing algorithms. This performance characteristic is due to a situation that

themessages are routed to similar paths when the static XY or adaptiveWest-First routing

algorithm is used.

4.3.5 Bit Reversal Traffic Scenario

Fig. 4.15(a) and Fig. 4.15(b) show the NoC average latency and bandwidth behaviors over

variable numbers of injected flits per data producer node and with different injection

rate for the bit reversal data distribution scenario. Similar to the previous results, if the

messages on each source node are injected with lower injection rate, then the NoC will

not be saturated. In the non-saturated conditions, the performance of the NoC prototypes

with the static XY and adaptive West-First routing algorithms will be similar.

Fig. 4.15(b) and Fig. 4.15(d) present the average latency and average actual measured

bandwidth respectively over different requested bandwidth rates when 10000 number of

flits per message are injected from every data producer node. As presented in the figure,

the performance of the NoC prototypes are similar for the static XY and adaptive West-

First routing algorithms, when the data are injected less than 666 MB/s (0.333 fpc). If the

injected rates are increased faster than the abovementioned value, the performance of the
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Fig. 4.15: Latency and actual bandwidth measurements in bit reversal traffic scenario.

NoC prototype with the static XY routing algorithm is better than the other one with the

adaptive West-First routing algorithm. It looks from Fig. 4.15(b) and Fig. 4.15(d), the NoC

with the static XY routing algorithm is saturated when the data are injected faster than

1000 MB/s (0.25 fpc).

4.3.6 Qualitative Comparisons with Traditional Wormhole Switching

Sections 4.3.1, Sections 4.3.2, Sections 4.3.3, Sections 4.3.4 and Sections 4.3.5 have pre-

sented the XHiNoC performance over different commonly-used data distribution sce-

narios. The performance evaluation results presented in this chapter is lacks of a direct

performance comparisons with the traditional wormhole switching method. This sec-

tion will explained qualitatively, the differences of the performance characteristics be-

tween the flit-level interleaving wormhole switching method and the traditional worm-

hole switching method.

A performance measurement result can be depicted as a 2D graph diagram showing

the average latency changes over incremental changes of data injection rates at the source

node. The latency metric can be represented as the number of clock cycle completely

accepting a packet or to accept the last flit of a wormhole packet. The injection rate rep-

resents the speed of data injection that can be measured as the number of injected flits

per cycle, the number of injected flits per second, or byte per second, or bit per second
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Tab. 4.1: The last flit acceptance (in clock cycle period) and average bandwidth (in

fpc/flit per cycle) measurements for Comm 1, Comm 2 and Comm 3 with different FIFO queue

depths under transpose scenario.

Communication pair Comm 1 Comm 2 Comm 3

FIFO Queue Depth 2 4 8 2 4 8 2 4 8

Acceptance of the 500th flit 2011 2011 2011 2021 2025 2033 3025 3025 3025

Average bandwidth (fpc) 0.2486 0.2486 0.2486 0.2474 0.2469 0.2459 0.1653 0.1653 0.1653

Acceptance of the 1000th flit 4011 4011 4011 4021 4025 4033 6025 6025 6025

Average bandwidth (fpc) 0.2493 0.2493 0.2493 0.2487 0.2484 0.2480 0.1660 0.1660 0.1660

Acceptance of the 1500th flit 6011 6011 6011 6021 6025 6033 9025 9025 9025

Average bandwidth (fpc) 0.2495 0.2495 0.2495 0.2491 0.2490 0.2486 0.1662 0.1662 0.1662

Acceptance of the 2000th flit 8011 8011 8011 8021 8025 8033 12025 12025 12025

Average bandwidth (fpc) 0.2497 0.2497 0.2497 0.2493 0.2492 0.2490 0.1663 0.1663 0.1663

(bps). In the traditional wormhole switching method, when the injection rates of pack-

ets at every source node are increased, then the average latency will increase linearly

by using some data distribution scenarios. When the injection rate is further increased,

the average latency will increase exponentially. But in the flit-level message interleaving

wormhole switching method, the average latency will reduce when the packet injection

rates are increased during non-saturating conditions.

In general, the NoC will be saturated at different saturating points when any or some

data producer nodes inject data to the NoC in such a way that the injected data traffic

compete each other to share the same communication channel, where the total number

of the expected rates of the competing traffics nodes exceeds the maximum bandwidth

capacity of the shared channel. Due to implementation of the link-level flit flow control

between the NoC routers as well as between the NoC local port and the network interface

(NI) port, the congestion situation will trace back to the source node. The data injection

rates at the source node are then automatically controlled to avoid input data overflows

during saturating conditions, i.e. the NI will not inject a new wormhole data flit until a

free space is free in the FIFO queue at the local input port. Hence, lossless data transmis-

sions in the network are guaranteed.

In the non-saturating conditions, where the expected data injection rates are slow in

such a way that the data rates in the NoC do not exceed the maximum NoC link band-

width capacity, the injection and acceptance rates move to fixed steady state points. In

this non-saturating condition, the latency and bandwidth of each considered point-to-

point communication pair will be always fixed even if the workload (data burst) sizes at

each data producer node are increased.

The simulation results presented in this chapter are only made without considering

the size of the mesh interconnection network. The NoC performance under different

network sizes and different routing algorithms could be different, but the main objective
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Tab. 4.2: The last flit acceptance (in clock cycle period) and average bandwidth (in

fpc/flit per cycle) measurements for Comm 4, Comm 5 and Comm 6 with different FIFO queue

depths under transpose scenario.

Communication pair Comm 4 Comm 5 Comm 6

FIFO Queue Depth 2 4 8 2 4 8 2 4 8

Acceptance of the 500th flit 2011 2011 2011 2019 2019 2019 1013 1013 1013

Average bandwidth (fpc) 0.2486 0.2486 0.2486 0.2476 0.2476 0.2476 0.4936 0.4936 0.4936

Acceptance of the 1000th flit 4011 4011 4011 4019 4019 4019 2013 2013 2013

Average bandwidth (fpc) 0.2493 0.2493 0.2493 0.2488 0.2488 0.2488 0.4968 0.4968 0.4968

Acceptance of the 1500th flit 6011 6011 6011 6019 6019 6019 3013 3013 3013

Average bandwidth (fpc) 0.2495 0.2495 0.2495 0.2492 0.2492 0.2492 0.4978 0.4978 0.4978

Acceptance of the 2000th flit 8011 8011 8011 8019 8019 8019 4013 4013 4013

Average bandwidth (fpc) 0.2496 0.2496 0.2496 0.2494 0.2494 0.2494 0.4983 0.4983 0.4983

of the simulation is not to present such difference. The main objective is to present the

characteristics of the proposed novel wormhole switching method during saturating and

non-saturating conditions.

4.3.7 Queue-Depth-Insensitive Performance Behavior

In this section, the throughput and latency of the XHiNoC with the novel wormhole

switching method for different sizes of FIFO buffers is evaluated. The size of the FIFO

buffer is also called the depth of the FIFO buffer, i.e. the maximum number of data that

can be buffered in the FIFO queue. A FIFO queue having the depth of M will have M

number of registers to buffer data. A matrix transpose benchmark is used to evaluate the

NoC performance with different sizes of the FIFO buffers. A networked processing unit

(NPU) at node (i, j) will send N number of flits (a message) to another NPU at node (j, i)

(like matrix transpose operation). The message is then routed using the static XY routing

algorithm.

Six internode data communication pairs are established in this scenario. An inter pro-

cessor core data communication is a pair of NPU sending a message to a NPU receiving

the sent message. Communication 1 (Comm 1) is a communication pair between node

(1,0) as the data sender and (0,1) as the data acceptor. The communication pairs are

represented as Comm 1|(1, 0) ⇔ (0, 1). The rest of the communication pairs are rep-

resented as Comm 2|(2, 0) ⇔ (0, 2), Comm 3|(3, 0) ⇔ (0, 3), Comm 4|(2, 1) ⇔ (1, 2),

Comm 5|(3, 1) ⇔ (1, 3) and Comm 6|(3, 2) ⇔ (2, 3). All communication node pairs are

required to communicate data with their maximum throughputs. Hence, in this scenario,

Comm 1, Comm 2 and Comm 3 will compete to share the same communication path,

while Comm 4 and Comm 5 will compete to share the same communication path, and the

Comm 6 will consume the maximum link bandwidth capacity of its communication path.
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Fig. 4.16: Crossbar switch structure for fully and customized IO interconnects.

The main objective of the simulation is to evaluate the effects of the FIFO buffer sizes

(the depth of the FIFO buffer) on the NoC performance. Table 4.1 and Table 4.2 show

the tail flit acceptance latency measured in number of clock cycles when the data producer

nodes inject 500, 1000, 1500 and 2000 flits into the NoC. The average bandwidth is then

analyzed as the total number of accepted flits over the number of clock cycle to accept

the last flit, and measured in number of flit per cycle (fpc) unit. The measurements are

made for every communication pair with the FIFO queue depth of 2, 4 and 8 registers.

As presented in both tables, the NoC performance is generally less sensitive to the FIFO

queue sizes. Only Comm 2 shows a very small variation in the tail flit acceptance latency,

where the acceptancewill be delayed for 4 clock cycle periodswhen the FIFO queue depth

is changed from 2 to 4 registers, and will be delayed for 12 clock cycles periods when the

FIFO queue depth is changed from 2 to 8 registers.

4.4 Design Customization for Area Optimization

In this section, the data paths and the control paths of the fully interconnected crossbar

switch of the XHiNoC based are customized for router area optimization purpose. The

customization technique has also been used by some existing NoCs such as ANoC [28],

Xpipes NoC [30], SPIN [90] and DSPIN [181]. See again Fig. 3.6(a) for the architecture

of the fully IO-interconnected crossbar of the XHiNoC. The IO data paths customization

is made based on two aspects i.e., neglecting paths for backtrace routing and neglecting

paths related to prohibited turn applied in the used routing algorithm.

This design customization will give a trade-off between area minimization and router

architecture flexibility. The IO switch interconnect customization will reduce the logic

area of routers but it reduces the design flexibility because if the routing algorithm is ex-

changed, then the crossbar interconnect of the router switch must be customized again to

suite the used routing algorithm. This optimized architecture is suitable for embedded

NoC-based MPSoC for consumer appliances that requires a compact router area, or in

post-fabricated chip-level multiprocessor systems that are specially dedicated to utilize
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Fig. 4.17: Circuit layout of a multiprocessor system interconnected with XHiNoC routers using

CMOS standard-cell technology library.

a fixed routing algorithm. Meanwhile, in the fully IO crossbar interconnect, the rout-

ing algorithm can be easily and simply exchanged without changing the data path and

control path structures of the router. This architecture is suitable when the NoC will be

implemented on a reconfigurable device such as a FPGA, where routing algorithm of the

NoC is reconfigurable, or probably also in the post-fabricated NoC-based multiprocessor

circuit, where the routing function is reconfigurable.

4.4.1 Neglecting Paths for Backtrace Routing

If we assume that our NoC will not make a backtrace routing, i.e. packets are routed

in a opposite direction in the current node because of any reason, then some backtrace

crossbar switch interconnects can be neglected. If we have N pairs of IO port, then we

will have input ports Pj, j ∈ {1, 2, · · · , N} and output ports Pk, k ∈ {1, 2, · · · , N}. Thus,

the backtrace IO paths connecting port Pj and Pk such that j = k can be removed from

the crossbar switch interconnects. For N number of IO pairs, we can remove N number

of the backtrace data paths and their related control paths from the router architecture.

If we see again the architecture of the XHiNoC in Fig. 3.6(a), then the data path di is

removed from the input port of an MIM module in output Port i. As a consequence,

the control paths ri,i and ai,i are removed from the port entities of all REB and Arbiter

modules.
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4.4.2 Neglecting Paths related to Prohibited Turns

This customization is made based on the selected routing function in the router proto-

type by taking into account the prohibited turns in the turn models of the used routing

function. For the sake of simplicity, we select the case for customizing router crossbar

interconnect using the static routing algorithm.

In the static routing algorithm, the turns North–East, North–West, South–East and

South–West are prohibited. We can set the Ports East, North, West, South and Local as

the Port 1, Port 2, Port 3, Port 4 and Port 5, respectively. Based on the five-port generic

architecture of the XHiNoC as presented in Fig. 3.6(a), then in both Port 1 and Port 3, the

data path input d2 and d4 connected to the MIM modules in the both ports are removed.

Consequently, the control paths r2,1, r2,3, r4,1 and r4,3 as well as the control paths a2,1, a2,3,

a4,1 and a4,3 are removed from the port entities of the REB at Port 2 and Port 4 and from

the port entities of the Arbiter modules at Port 1, Port 3.

We can also generalize that, if turn from input Port n to output Port m, where n, m ∈

{1, 2, · · · , N}, is prohibited in the routing function, then data path input dn from a routing

engine (RE module) connected to theMIM module atPort m, as well as the control paths

rn,m and an,m can be removed from the crossbar interconnects of the switch. Section 4.5

will present the logic cell area efficiency to apply the customization of the router IO port

interconnects. Fig. 4.16 presents the crossbar structure of the mesh switches with fully

IO interconnects (Fig. 4.16(a)) and customized IO interconnects for mesh with XY rout-

ing algorithm (Fig. 4.16(b)) and for mesh with minimal adaptive WF routing algorithm

(Fig. 4.16(c)). As presented in Fig. 4.16(b) data paths from North (5) input port to East (1)

and West (3) output ports, as well as data paths from South (4) input port to East (1) and

West (3) output ports are removed from the crossbar interconnects because by using the

static XY routing algorithm, turns North–East, North–West, South–East and South–West

are prohibited.

4.5 Synthesis Results

4.5.1 Synthesis with Fully and Custom Crossbar IO Interconnects

In this subsection, the XHiNoC router prototypes are synthesized using 130-nm CMOS

standard-cell library from Faraday technology Corporation. The router is targeted to work

with about 1.1 GHz data frequency (or 0.9 ns clock period).

Table 4.3 presents the synthesis result for the NoC prototypes with the static XY rout-

ing algorithm which are designed with fully and customized IO-port crossbar switch in-

terconnects, as well as the NoC with the adaptive West-First (WF) routing algorithm with

fully IO crossbar switch interconnects. The table also shows in detail the efficiency for

each component in the router when the crossbar interconnect in the switch router is cus-
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Tab. 4.3: Synthesis Results of the router with flit-level interleaved wormhole switching method

using 130-nm CMOS technology with targeted working frequency of about 1.1 GHz (0.9 ns clock

period).

NoC Router WF with XY with XY with Efficiency:

Component Fully IO Fully IO Custom IO Custom/Full IO

Intc. (mm2) Intc. (mm2) Intc. (mm2) with XY routing

FIFO buffer (E) 0.003419 0.003390 0.003274 3.4 %

FIFO buffer (L) 0.003343 0.003376 0.003276 2.9 %

FIFO buffer (N) 0.003375 0.003382 0.003254 3.9 %

FIFO buffer (S) 0.003357 0.003387 0.003250 4.0 %

FIFO buffer (W) 0.003343 0.003374 0.003263 3.3 %

Total 5 FIFO buffers 0.016837 0.016909 0.016317 3.5 %

% of Total Cell Area 14.87 % 16.0 % 19.3 %

Arbiter (E) 0.001571 0.001517 0.000195 87.2 %

Arbiter (L) 0.001588 0.001518 0.000549 63.8 %

Arbiter (N) 0.001611 0.001518 0.000580 59.9 %

Arbiter (S) 0.001659 0.001445 0.000587 61.9 %

Arbiter (W) 0.001642 0.001469 0.000201 86.3 %

Total 5 Arbiters 0.008071 0.007489 0.002112 71.8 %

% of Total Cell Area 7.13 % 7.0 % 2.4 %

MIM (E) 0.011644 0.010969 0.008345 23.9 %

MIM (L) 0.010895 0.011592 0.009996 13.8 %

MIM (N) 0.010951 0.011153 0.010139 9.1 %

MIM (S) 0.011518 0.011300 0.009873 11.1 %

MIM (W) 0.011464 0.011230 0.008433 24.9 %

Total 5 MIMs 0.056472 0.056224 0.046786 16.8 %

% of Total Cell Area 49.88 % 53.0 % 55.7 %

REB (E) 0.006404 0.005162 0.004140 19.8 %

REB (L) 0.006325 0.005175 0.004391 15.1 %

REB (N) 0.006378 0.005157 0.002953 42.7 %

REB (S) 0.006316 0.005155 0.002953 42.7 %

REB (W) 0.006411 0.005161 0.004626 10.4 %

Total 5 REBs 0.031834 0.025810 0.019063 26.1 %

% of Total Cell Area 28.12 % 24.0 % 22.6 %

Total Cell Area 0.113214 0.105877 0.083703 20.9 %
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(a) Cell allocation view (b) Place & Route view

Fig. 4.18: Circuit layout of the router with XY routing algorithm (e=east, n=north, w=west,

s=south, l=local, Q=FIFO queue, A=Arbiter).

tomized based on the static XY routing algorithm. The turn models applied to the static

XY routing function is used to implement the necessary and unnecessary data wire and

control wire lines.

As shown in Table 4.3, we can see the area of the ID-management unit in multiplexor

unit (MIM) implementations. The area of the MIM component is about 3 times the area

of the 2-depth FIFO. Theoretically, if we want to interleave 15 messages by using VC ap-

proachwhere the FIFO buffer is not shared by different messages, then 15 virtual channels

must be implemented on each input or output port as well as 15 VC controller with 15

virtual channel ID on both input and output ports. Hence, our proposed architecture with

the local ID-Management unit is much more efficient than the VC approach.

From Table 4.3, we can see that, in term of the percentage, higher efficiency is obtained

from the Arbiter units, i.e. about 71.8%. But related to the logic cell area, higher efficiency

is achieved from the MIM module, i.e. about 0.01 mm2 (obtained from 0.056224 mm2 −

0.046786 mm2). In general, the NoC prototype with the custom crossbar interconnects

gives about 21% logic cell area efficiency over the NoC prototype with fully crossbar in-

terconnects in cases when the customization is made for NoC using the static XY routing

algorithm. FIFO buffer units do not give a significant efficiency because the customization

method does not involve directly data paths and control paths of the FIFO queues.

We have also prototyped the circuit layout of a 2D 4 × 4 mesh NoC using XHiNoC
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routers as presented in Fig. 4.17. Each XHiNoC router is connected with a networked

processing unit (NPU), which is assigned as a block with empty logic cells (black box).

The circuit layout is made using a Silicon Encounter tool from Cadencewith 180-nm CMOS

standard-cell technology from UMC. The right-side of the figure also shows the enlarged

view of the logic cell placement and wire routing of the router at node (3,3). Fig. 4.18

shows the circuit layout result of a single switch component. The allocations of all mod-

ular cells in the switch is presented in Fig. 4.18(a). Fig. 4.18(b) shows the cell placement

and wires route results of the switch.

By using 130-nm CMOS standard-cell library, the total cell area of our customized

NoC router is about 0.084 mm2 (32-bit data + 7 control bits). We compared the area of our

NoC with other currently developed NoC. Although we realize that the logic area reports

may not be fairly comparable because of the differences of the design parameters such as

buffer sizes, the use of virtual channels (VCs) and the flit-width, the least we can see is the

impact of the use the wormhole cut-through switching implementation, which does not

require virtual channels. In addtion, the depth of the FIFO queue in each input port can

be minimize to 2 registers. Hence, the area cost of our on-chip router is reduced. Now we

can see the comparisons as follows.

The TRIPS NoC [87] that uses VCs, contains two data networks, the OPN and the

OCN, in which the logic areas of the OCN and OPN routers are 1.10 mm2 and 0.43 mm2,

respectively by using 130-nm technology. The TRIPNoC clock frequency is about 366MHz.

The Xpipes NoC [30] (without specifically describing whether VCs are used or not) has

a logic area of 0.19 mm2 at 800 MHz-implementation with 4-IO-port and 64-bit-flit router

implementation using 130-nm technology. The larger area of the TRIPS NoC is due to the

use of virtual channels, where four virtual channels per input port are implemented in

the TRIPS router. The depth of the FIFO buffer in each channel is two flits.

Teraflops [98] NoC router that uses a double-pumped crossbar switch to reduce the

routing area has a compact 0.34 mm2 router area using 65-nm technology (32-bit data

+ 6 control bits). For various voltage levels ranging from 0.75 V until 1.2 V, Teraflops

NoC router can be clocked from 1.7 GHz to 5.1 GHz respectively. The SCC [103] NoC

router synthesis result by using 65-nm standard-cell library is 0.097 mm2 (32-bit flow

control digits/flits) with 250 MHz working frequency. The Teraflops NoC and SCC NoC

do not use VCs. Specifically, SCC NoC does not use VCs because they increase the total

buffer counts and results in power consumption that would exceed the SCC NoC’s target

constraints [103]. With similar motivation, we also do not implement virtual channels in

our NoC to save area and power dissipation as well as to characterize specifically how

our NoC can solve the head-of-line blocking problem without the use of VCs.

In the data output stage, we combine the IDmanagement unit stage into crossbar data

multiplexing stage. As a result, the maximumdata frequency of the current VLSI architec-

ture can be increased from 472 MHz to 1.1 GHz (increase about 2.3× or more than 100%

speed overhead). By using our current VLSI architecture, the critical path of our previous

on-chip router that is located in the routing stage has been cut to increase the maximum
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Tab. 4.4: Gate-level synthesis of the wormhole-switched router using 130-nm CMOS technology

with 1.0 GHz target frequency (16 ID slots per link) for different FIFO buffer sizes (Queue-Depth).
FIFO Depth 2 4 8

Total logic cell area (mm2) 0.102 0.119 0.152

Critical path (ns) 0.94 0.95 0.95

Est. power dissipation (mW ) 54.575 65.674 87.572

FIFO cell area (mm2) 0.0164 0.0326 0.0656

% of Total logic cell area 16 % 28 % 43 %

data frequency of the on-chip router. The critical path in the current architecture is now

on the Multiplexor with ID Management Unit (MIM Component).

By using the NoC router static XY routing and with the fully IO port interconnects,

the estimation of the dynamic power, i.e the net switching power and cell internal power

of the NoC router is about 15.99 mW and 44.25 mW , respectively. Its leakage power is

estimated about 21.5 µW . While the net switching power, cell internal power of the NoC

router with minimal adaptive WF routing algorithm with fully IO port interconnects is

estimated about 17.99 mW and 47.15 mW respectively. Its leakage power is estimated to

be about 22.2 µW . By using the NoC router with static XY routing algorithm andwith op-

timized/customized IO port crossbar interconnects, the net switching power, cell internal

power and leakage power is estimated 13.45 mW , 38.70 mW and 15.4 µW , respectively.

4.5.2 Synthesis with Different FIFO Queue Depths

In this subsection, the XHiNoC router prototypes are synthesized using 130-nm CMOS

standard-cell library from Faraday technology Corporation. The router is targeted to work

with about 1.0 GHz data frequency (or 1.0 ns clock cycle period). Table 4.4 shows the

impact of the depth of the FIFO buffer on estimated power dissipation and total logic

cell area. The cell area increases about 16% if the depth is increased two times (from 2 to

4). If the FIFO depth is increased 4 times (from 2 to 8), then a 49% cell area overhead is

obtained. The area contribution of the 8-depth FIFO buffer is almost half of the total logic

cell of the router. As presented in the Table 4.4, with the depth of 2, the area contribution

of the FIFO buffer over total cell area of the router is only about 16%. It looks like the

large depth of the FIFO buffer will give a significant contribution of the total area of a

NoC router.

The critical paths of the NoC router prototypes with different sizes of the FIFO buffer

are shown also in Table 4.4. The NoC router prototypes are synthesized with target data

(working) frequency of 1 GHz (clock period of 1 ns). It seems that the critical path is

almost independent from the depth of the FIFO buffer. The critical paths with 1 GHz

target frequency of the router prototypes with 2, 4 and 8 FIFO registers vary only between

0.94–0.95 ns. The critical path of the NoC router itself is not located in the FIFO buffer

component.
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Tab. 4.5: Gate-level synthesis of the wormhole-switched router using 130-nm CMOS technology

(2-depth FIFO buffer) for different number of available ID slots per link.
Num. of ID slots per link 8 16 32

Total logic cell area (mm2) 0.073585 0.105877 0.174709

Working clock cycle period 0.9 ns 0.9 ns 1.0 ns

(Data frequency) (1.1 GHz) (1.1 GHz) (1.0 GHz)

Critical path (ns) 0.82 0.82 0.95

Est. power dissipation (mW ) 45.872 60.255 83.507

REB cell area (mm2) 0.018356 0.025810 0.041581

% of Total logic cell area 24.9 % 24.0 % 23.9 %

MIM cell area (mm2) 0.031389 0.056224 0.108402

% of Total logic cell area 42.7 % 53.0 % 62.0 %

4.5.3 Synthesis with Different Number of Available ID Slots

The wormhole-switched XHiNoC router with fully crossbar IO interconnects and with

static XY routing algorithm has been synthesized for different number of available ID

slots per data communication link. Table 4.5 shows the synthesis results when the number

of available ID slots per link are 8, 16 and 32 ID slots. The number of available ID slots

can be controlled through a parameter in the VHDL package file at design design. Beside

the total logic cell area, Table 4.5 presents also the impact of the amount of ID slot on the

logic cell area of the REB and MIM components, as well as their logic are contributions

to the total logic cell area. The changes of the ID slot availability parameter will directly

affect two components in the XHiNoC router, i.e. the REB and the MIM components

since both components contain an ID-based routing reservation table and ID slot table.

When the number of ID slots per link is increased two times (from 8 to 16 slots), the

area overhead is about 43.88% or the logic cell area increases When the number of ID slots

per link is about 1.44 times. increased four times (from 8 to 32 slots), the area overhead

is about 137.42% or the area increases about 2.37 times. When the number of ID slots per

link is increased two times (from 16 to 32 slots), then the area overhead is about 65.01% or

1.65 times. It also seems that the logic cell areas of the REB andMIM components increase

as the number of ID slots per link is set larger.

When the number of ID slots per link is set to 8 or 16 slots, the XHiNoC router can be

synthesized with a data frequency of 1.11 GHz. When the number of available ID slots is

set to 32 ID slots, then the router cannot be synthesized to work at 1.11 GHz, but it can

be synthesized at a 1.0 GHz working frequency. The table also presents the signal delay

of the critical path of the router with different numbers of ID slots per link. According to

the synthesis report files, the critical path of the router is in the MIM component. There-

fore, the signal delay in the critical path of the router can be longer, when the number of

available ID slots is increased.
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Tab. 4.6: Synthesis of the wormhole-switched router with customized crossbar IO interconnects

on a Xilinx FPGA device (Target device: Spartan3 xc3s4000).
Utilization Percentage of Total

Number of slice flip-flops 1247 2.0 %

Number of 4-input LUTs 3078 5.0 %

Number of occupied slices 1772 6.0 %

Minimum Delay 12.290 ns

(Maximum Frequency) (81.367 MHz)

4.5.4 Synthesis on an FPGA Device

The XHiNoC wormhole-switched router with static XY routing algorithm and with the

customized crossbar IO interconnects has been synthesized for an FPGA target device.

The target device is a Spartan3 (xc3s4000) device from Xilinx. Table 4.6 shows the syn-

thesis summary, which presents the utilization of the occupied slices, slice flip-flops and

4-input look-up tables (LUTs). As shown in the table, the maximum allowable working

(data) frequency is 81.367 MHz, which in general is slower than the CMOS standard-cell

technology implementation. It seems that the utilization of the slices on the target FPGA

device of the wormhole-switched router with the customized IO interconnects is about

6% of the total slices.

4.6 Summary

This chapter has presented a new router architecture for NoC augmented with a novel

mechanism able to extend the wormhole switching technique to support the interleaving

of the flit belonging to different packets in the same communication link. The work pre-

sented in this chapter deals with a very important problem which limits the performance

of the traditional wormhole-switched network, i.e. the head-of-line blocking problem. By

using the proposed technique, the head-of-line blocking problem can be strongly attenu-

ated, similar to another technique that uses virtual channels. But the virtual-channelles

technique solves the problem without experimenting the large overhead of the virtual-

channel-based router implementation due to the additional FIFOs, arbitration units and

control logic units.

The main critic of the NoC router design with the wormhole switching capable of

interleaving different messages at flit level is the implementation of two tables on every

one-directional link that can lead to an area overhead. However, when a number of N

messages is allowed in-flight (mixed) in the same physical link, then compared to a VC-

based solution, our concept theoretically requires less logic area and power, since the size

of the two tables having N slot registers will be less than the size of N number of VC

buffers.
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Services in terms of efficient routing and scheduling are critical with respect to the

performance of NoC-based multicore processor systems. Historically, the first genera-

tion multicomputers only supported unicast communication (single PE sends a message

to single PE unit). Nowadays, multicomputers have been developed towards collec-

tive communication services. The collective communication services include one-to-many

communication such asmulticast (the same message is sent from a source node to an arbi-

trary number of destination nodes), one-to-all communication such as broadcast (the same

message is sent from a source node to all nodes (entries) in the network) and scatter (dif-

ferent messages are sent from a source node to all entries in the network), many-to-one

communication (a destination node receives different messages from an arbitrary num-

ber of source nodes), and all-to-one communication such as reduce (a destination node

combines different messages from an arbitrary number of source nodes by performing a

certain operation such addition, multiplication, maximum, minimum, or a logical opera-

tion).

Among the aforementioned collective communications, the multicast and broadcast

communications are the most interesting communication modes. Since both communi-

cations are not only required in many parallel algorithms and applications in multipro-

cessor system but also demand special attentions in the network communication protocol

layers. With software implementation, a multicast message can be injected into the net-

work by sending separate copies of the message from the source to every destination

node (unicast-based multicast delivery). However, this approach is inefficient in terms of

communication latency and energy.

The need for collection communication service including multicast routing in parallel

computing and multicomputer-based applications is described in Section 5.1. The state

of the art in multicast routing methodology and theory is presented in Section 5.2. The

multicast routing can be divided generally into path-based multicast routing and tree-based

multicast routing. The difference between both methods is described in Section 5.2.1. A

new theory of a deadlock-free multicast routing is presented in this chapter. The theory is

supported by a simple and smart multicast contention/conflict management callled Hold-

Release Multicast Tagging Mechanismwhich is explored in Section 5.3.

Microarchitecture, components and implementation of the best-effort version of the

deadlock-free multicast routers are presented in Section 5.4. The extended adaptive mul-

ticast router version is also explored in Section 5.5 together with an inefficient spanning

tree (branches of tree) problem that probably occurs when using adaptive tree-based mul-

ticast routing algorithm. Therefore, a special technique that is directly implemented on

the multicast routing engine of each NoC router is used to solve the inefficient spanning

tree problem. The effectiveness of the proposed multicast routers with different rout-

ing algorithms is evaluated under a random mixed unicast-multicast traffic scenario as

presented in Section 5.6. Three performance metrics are used to in the evaluation, i.e.

tail flit transfer latency, message throughput and the number of traffics performed in the
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NoC communication links. The synthesis results of the multicast routers using CMOS

standard-cell technology are also presented in this chapter (Section 5.7). The work in this

chapter is then summarized in Section 5.8.

5.1 The Need for Collective Communication

The multicast delivery service has been intensively used in large-scale multiprocessor

systems, and has been a fundamental service of some data parallel computer languages.

The following points present the need for multicast services in parallel computing and

multicomputer applications that have been cited and well summarized in [137], [138] and

in [110] from many works in the literature.

• In several parallel algorithms, e.g. parallel search algorithm [61] and parallel graph

[126] algorithm, have made use of multicast communication. In the parallel algo-

rithms, a set of independent computational processes is collectively run to find a

global optimum state. When a computational process finds an optimal state, this in-

formation is sent to other processes that will be efficiently made by using multicast

delivery.

• In parallel numerical algorithm involving a variety of linear algebra computations,

multicast communication is used to perform some matrix-based operations [76]

[109], such as matrix-vector and matrix-matrix multiplication, LU-factorization and

Householder transformations.

• In single-instruction multiple-data (SIMD) machines, in which the same program

is executed on different processors with different data in parallel, and in multiple-

instruction multiple-data (MIMD) machines, multicast communication is an effi-

cient operation, especially when long data streams will be sent concurrently to sev-

eral processor cores.

• In a data parallel programming model designed by using data parallel program-

ming languages, a variety of process control operations and global data movement

such as reduction, replication, permutation, segmented scan and barrier synchronization

require collective communication models. Specifically, the replication [150] and the

barrier synchronization [214] are performed by using multicast data delivery.

• In a distributed shared-memory paradigm, multicast services may be used to ef-

ficiently support shared-data invalidation and updating [133], i.e. when a core

change the value of a variable in its local cache, then this change must be informed

to other cores in the system that also have the copy of the variable in their caches to

maintain data consistency (cache coherence issue).
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Recently, development of programming models for the NoC-based multiprocessor

systems has been recently a hot topic in multicomputer research area. Ultimately, mul-

ticast communication service has been a standard service in data parallel programming

languages such as Fortran-D [73], Distributed Fortran 90 [155] and High Performance For-

tran (HPF) [95]. Message passing libraries such as Message Passing Interface (MPI) [156]

and Parallel Virtual Machine (PVM) [79], [80], which are commonly used to design mes-

sage passing programming models, also includes some standard procedures to perform

collective communications such multicasting and broadcasting. Both libraries have been

developed for computer languages such as Fortran and C/C++.

Multicast communications in the programming models can be effectively and effi-

ciently implemented in the application layer of the NoC-based multiprocessor systems,

as long as hardware infrastructures in network, data-link and physical layers supports

the multicast services. Indeed, the multicast support as one of the collective communi-

cation services can simplify the programming models and alleviate programming efforts

for NoC-based multiprocessor systems.

In internet community, multicast data communication has been an interesting topic.

The works presented in [71], [170] and in [112] have presented some protocols utilized

to support a multicast data transmission. The work in [112] especially provides a reli-

able multicast communication by involving the use of multiple multicast channels for

reducing receiver processing costs and reducing network bandwidth consumption in a

multicast session. The works mentioned above are dedicated for off-chip networks not

for on-chip network platform. However, the implemention of the multicast protocol in

both different platforms has the same motivation, i.e. to reduce communication time and

energy.

5.2 State-of-The-art inMulticast RoutingMethodology and

Theory

5.2.1 Path-based and Tree-based Multicast Routing Methods

Multicast messages can be routed in the network by using path-based or tree-based multi-

cast routing method. Fig. 5.1 presents the different traffics formations by using the tree-

based and path-based multicast routing. In the tree-based multicast routing, the traffics

are formed like a tree, in which the destination nodes are located at each end-branch of

the tree. The multicast tree tends to increase contention probability between multicast

messages in the network, because each multicast message tree can acquire more than

two sinking (output) ports in an intermediate node, which probably compete with other

multicast message trees to acquire the same sinking ports. In order to eliminate such sit-

uation, the path-tree multicast routing is proposed. In the path-based multicasting, the

message is guided in the network such that the all destination nodes are transited within
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Fig. 5.1: The traffic formations by using static tree-based, dual-path andmulti-path multicast rout-

ing methods.

the message with minimum number of paths.

The works in [137], [63] and [39] present the multicast methodology using path-based

method. In path-based multicast routing, PEs that inject the message have to set up the

order of headers containing the addresses of all multicast destination nodes in order to

find optimum paths from the PEs to the destination nodes. Therefore, there will be time-

overhead for the message preparation at source nodes. The path-based multicast routing

is aimed at reducing or probably preventing the multicast messages conflicts in interme-

diate nodes. Each multicast packet will acquire at most two sinking ports in a destination

node to forward the multicast message i.e., LOCAL port (connected directly to a resource

tile) and the other (one) port for forwarding/duplicating the multicast message to other

destination nodes. In general, path-based multicast routing can be classified into dual-

path and multi-path multicast routing. In the dual-path multicast routing, the number

of maximum paths performed in the network is two, while in the multi-path multicast

routing, the number of maximum path is four. However, the path-based multicast rout-

ing avoid to do branching. In each intermediate destination node, a packet is firstly for-

warded from an input port to the LOCAL output port, while keeping the packet in the

input port. Afterwards, the packet is routed to another requested output port. Fig. 5.1

presents the different routing paths performed by the dual-path and multi-path multicast

routing methods.

The works in [19], [147], [124] present the routing methodology based on multicast

tree. In the tree-based multicast routing, the header ordering in source nodes is not re-
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quired (the order of the destination addresses can be freely determined). The multicast

routing will form communication paths like branches of trees connecting the source node

with the destination nodes at the end points of the tree branches. A higher probabil-

ity that multicast deadlock occurs in intermediate nodes is the disadvantage of the tree-

basedmulticast routing. However, the novel multicast scheduling for adaptive tree-based

multicast routing presented in this thesis can solve effectively and efficiently the multi-

cast deadlock problem in the intermediate nodes, which makes the methodology more

interesting.

In general, the multicast routings presented in [137], [63], [39], [19], [147] and [124]

are not suitable for on-chip networks. All these works utilize virtual channels to solve

multicast deadlock problems. In general, FIFO queues as the main components in virtual

channels dominate significantly the logic gate consumption. In the XHiNoC, the adaptive

routing algorithms used to route unicast andmulticast packets are the same andmulticast

contentions are solved without using virtual channels, resulting in a very efficient gate-

level implementation of the routing function and data buffers.

The work presenting a path-basedmulticast routing dedicated for NoC has been intro-

duced in [146]. The path-based multicast routing is designed to avoid multicast deadlock

in the destination nodes by reserving virtual channels and giving priority to the multicast

message over the unicast message on arbitration of link bandwidth. Experiments in the

work show that the proposed multicast technique improves throughput, and does not

exhibits significant impact on the unicast performance in a network with mixed unicast-

multicast traffic “only if” the network is not saturated.

Compared to the work presented in [146], the proposed tree-based multicast schedul-

ing presented in this thesis does not give priority to multicast messages (fair flit-by-flit

arbitration between the unicast and multicast messages). Hence, our multicast technique

does not have a significant impact on the unicast performance “even if” the network

is saturated. The multicast routing methodology used in the XHiNoC also presents an

interesting performance characteristic during saturating and non saturating conditions.

Moreover, the NoC router in [146] has not been synthesized into logic gate level.

5.2.2 Source and Distributed Multicast Routing

According to the place where the routing paths and routing decisions are made, the mul-

ticast routing can be divided into centralized (source) multicast routing and distributed mul-

ticast routing. By using the static tree-based multicast routing in a mesh-based regular

network for instance, the routing decision can be made by using the distributed routing

approach, because the network orientation can be easily mapped to every network router

to make correct routing paths.

The work in [216] presents the problem of synthesizing custom NoC architectures that

are optimized for a given application, and considers both unicast and multicast traffic
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flows in the input specifications. Several algorithms that can systematically examine dif-

ferent flow partitioning are proposed. Algorithms based on Rectilinear-Steiner-Tree are

then used to generate efficient network topology. The design flow of the work integrates

floorplanning and deadlock-free routing determination. The work proposes a static solu-

tion for deadlock-free multicast routing that is fixed to specific NoC application. Hence,

it look that the work in [216] can be classified into the centralized multicast routing with

off-line (at design time) multicast routing paths computation.

The work in [138] presents a new heuristic multicast routing scheme that combines

the distributed routing and source routing methods. The proposed path-based multi-

cast routing scheme consists of two routing algorithms, i.e. a preprocessing algorithm

for message preparation to find routing control information that will be carried by the

message that are run at source node, and an algorithm for message routing that are made

distributively in the intermediate nodes. The generated routing control information are

in conjunction with destination address such that efficient routing decision can be made

by forward nodes.

So far, there have been some other works that have introduced a NoC router with

multicast routing service. The work in [1] for example presents a Multicast Router Rotary

(MRR). The multicast routing algorithm in the MRR can be classified into a distributed

routing method. The multicast contention in MRR is solved by implementing two single-

direction internal rings in the switch, one in clock-wise direction and the other one in

counter clock-wise direction. Without careful data flow rule, a dangerous permanent

deadlock can occur especially when packets come from all different input ports, and each

of them requests all output ports simultaneously. The proposed data flow rule in theMRR

must even allow misrouting to avoid deadlock in a case that a packet cannot find a free

output port. In any circumstance, misrouting can increase data communication energy

due to the overhead misrouting traffic which can lead to a livelock situation. The work

in [1] has not yet addressed this livelock issue. Moreover, an additional 10 internal buffers

(5 for each ring) in the MRR will increase the area overhead of the router.

The work in [189] presents a Broadcast-multicast-enabled Logic-based Distributed Rout-

ing (BLBDR). Another routing approach called Recursive Partitioning Multicast (RPM)

method is also presented in [208]. The BLBDR and RPM methods need for global net-

work view and preprocessing algorithm for network partitioning. In the RPM method,

a routing decision is made based on the current network partitioning that has been pre-

viously computed recursively in a source node. The whole network is divided into at

most eight subnets by the source node. The objective of the network partitioning is to

minimize packet replication time. In general, a pre-processing network partitioning algo-

rithm methods will lead to an initiation time overhead.

A Virtual Circuit Tree Multicasting (V CTM) method is presented in [107]. In the VCTM

method, a setup packet must be sent in the network to configure a switched tree-based

multicast virtual circuit. The virtual circuit configuration is implemented by using virtual

channels. Hence, like the RPM method [208], both multicast routers have large logic area
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(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

Message A Message B

(a) Tree-based multicast routing

Message A

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

Message B

(b) Branching in dual/multi-path multicast-

ing

Fig. 5.2: Multicast deadlock configurations when using tree-based and path-based multicast rout-

ing in mesh networks.

cost due to the replication of buffers and control logics for the VCs arbitration.

5.3 Theory for Deadlock-Free Multicast Routing

Multicast deadlock configuration is a situation in which multicast packets, which are

switched in the network with wormhole switching technique, cannot move further due

to multicast dependency occurs in some NoC routers. The multicast dependency occurs

because two or more multicast packets are competing with each other to access the same

output ports in any NoC router, while in other NoC routers, the same situation occurs,

i.e. the same competing multicast packets compete also to acquire the same output ports.

In order to understand a better insight about the multicast deadlock configuration, an

example of the multicast deadlock configurations is presented in Fig. 5.2.

The deadlock configuration when using tree-based multicast routing with wormhole

switching method is shown in Fig. 5.2(a). In node (2,2), message A cannot move further

because the East andWest output ports are acquired by message B. Meanwhile, message

B cannot move further in node (2,1), because the East andWest output ports are acquired

by message A. The multicast dependencies of the contenting multicast packets in many

network nodes will lead to a deadlock configuration.

In a path-based multicasting, a source node arranges the ordered list of headers con-

taining destination address. When a message is injected to the network, it will be routed

to a destination node according to the address attached in the leading header flit. When

the message arrives the destination node, the leading header flit is removed. Hence, the

next header will be the leading flit and guides the message into the next destination. The

path-based multicasting is a mechanism to avoid branching in intermediate nodes. Two

branches of the paths are formed only in destination nodes, i.e. one to Local port and
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one to another port. In the source node, the number of branches can be maximum 2 for

dual-path and more than 2 for the multipath-based multicasting. Deadlock configura-

tion can occur when a multicast router does tree branch (even by using dual/multi-path

multicast) as shown in Fig. 5.2(b).

Theories of deadlock-free adaptive multicast routing in wormhole network has been

presented in [110], [137] and [63]. The work in [110] has presented an optimum broadcast-

ing method and personalized communication in hypercube interconnection networks. In

particular, the theory presented in [63] is only valid when using the path-based multicast

routing model in wormhole-switched network.

The NoC presented in [142] uses a time-space-time switch designed for time-division-

multiplexing (TDM-based) NoCs and introduces a basic formalism for multicast routing.

Slot map tables as central components are used as time slot interchangers to directly con-

trol the read and write operation in random access frame buffers. Although this work has

mentioned the feasibility of implementing the multicast scheduling technique, a concrete

multicasting procedure, system-level or RTL-level simulations for measuring the NoC

performance over multi message multicast traffics and the NoC’s capability to handle the

multicast deadlock problem has not been presented so far.

However, most of the aforementioned proposed theories are generally not dedicated

for networks-on-chip. The work in [142] has found that the problem of finding optimal

coloring for TDM-based multicast solution is a non-deterministic polynomial-time (NP)

hard problem. The work has tried to use a Q-Coloring Algorithm that has been previously

introduced in [86]. However, the work shows only the existence of feasible scheduling

algorithm supporting multicast routing without further formal prove. The following Sec-

tion 5.3.1 proposes a simple and smart mechanism to tackle multicast deadlock configu-

ration, which is suitable and dedicated for networks-on-chip, in which virtual channels

are not involved to solve the multicast dependency problem.

5.3.1 NewMulticast Method based on Hold-Release Tagging Policy

The tree-based multicast routing is prone to deadlock. The deadlock occurs in a interme-

diate node when one or more outgoing links are simultaneously requested by the same

multicast packets. Therefore, we propose a new methodology to handle the multicast

deadlock. Fig. 5.3 presents 6 snapshots of the proposed multicast scheduling method and

a fair flit-by-flit round arbitration of a so called hold-release multicast fair scheduling policy

for the deadlock handling mechanism.

• In Snapshot 1, three multicast packets, i.e A coming from Port 1, B from Port 3 and

C from Port 4, request different and the same outgoing links. Port 2 and Port 3

outgoing links are requested by Packets A and C. The other outgoing links are only

requested by one Packet, i.e. Port 1 and Port 4 are requested by Packet B, and Port 5

by Packet C. The flits A10, B10 and C10 represent the flits with local ID-tag 0.
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• Although the outgoing links are requested by more than one packet, each one of

every single flit can be granted access to the outgoing link at every stage as shown

in Snapshot 2. In this stage, we assume that flit C1 is firstly selected to access the

Port 2 outgoing link, while flit A1 is granted access to the Port 3 outgoing link. The

other outgoing links, i.e. Port 1, 4 and 5, also select their single request from flits in

the incoming port.

• In the next stage as presented in Snapshot 3, all granted flits are accepted in the

outgoing links. However, the states of all flits in incoming are different and depend

on whether their multicast requests have been granted by their required outgoing

ports. For instance, all multicast request of Packet B to access Port 1 and Port 4

have been granted by these ports. Hence, flit B1 (with R state) can be released

from Port 3 input buffer and its request is now replaced by the request of the new

incoming flit B2. But flits A1 and C1 (with H state) must still be withheld in input

buffers because their other requests (presented in dashed lines) to access another

port have not been granted in this stage. In this stage, all ID-tags of the packets are

mapped and updated with new ID-tag 0.

• In the next stage as shown in Snapshot 4, by using the flit-by-flit round arbitration

method, arbiters at Port 2 and Port 3 change now their selection to other flits, which

also request the ports. Port 2 selects now flit A1, while Port 3 selects flit C1. Port 1

and Port 4 select again the flit coming from Port 3 input buffer (i.e. flit B2), because

these ports are only requested by Packet B from Port 3 input buffer. But the Port 5

outgoing arbiter will not grant flit C1 again because flit C1 has been granted in the

previous stage. This decision is made to avoid flit C1 being transported twice into

the Port 5 (avoiding improper multicast replication).

• In the next stage as presented in Snapshot 5, flits A1, B2 and C1 are transferred to

the outgoing links, and can be released from Port 1, Port 3 and Port 4 input buffers

(with R state) respectively because their multiple requests have been granted previ-

ously step by step in Snapshot 2 and Snapshot 4. Their request are now replaced

by the requests of new incoming flits i.e., flits A2, B3 and C2. Because ID-tag 0 has

been used by packetC in Port 2, then packetA in the Port 2 outgoing link is assigned

with a new local ID-tags 1 (A11). The same situation is presented in Port 3, where

packet A has used ID-tag 0. Hence packet C in the Port 3 outgoing links is assigned

with a new local ID-tags 1 (C11).

• Snapshot 6 generally shows the samemechanismwith the situation shown in Snap-

shot 2.

The philosophy of the Hold-Release Tagging Mechanism is as follows. “If a multicast

flits from an input port n has an N req
s,n number of requests at any instant time ts, then

each single request to an output port m can be forwarded from the input port n to the

output port m in the next time stage only if it receives a grant by an arbitration unit at
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Fig. 5.3: Hold and Release Multicasting Policy.

input port n, while the other requests must be held in the input port if it is not granted

by their requested output ports. In each next time stage, a single request, which has been

granted before, must be reset to prevent improper flit replication. If all requests have been

granted, then the multicast flit can be released from the queue in input port n”.

Fig. 5.4 shows another example of a high contention of multicast routing requests in

a NoC router, in which the solution is described in a different manner. As presented in

the figure, five messages coming from different input ports compete with each other to

share the same output ports. Message A coming from input port 1 for example has four

multicast routing requests, i.e. to output port 2, 3, 4 and 5. The other messages (message

B, C, D and E) have also four multicast requests. At the output port 1 for example four

multiple requests must be served, i.e. requests from message B, C, D and E.

Since all messages come at the same input time stage, i.e. input time stage 1 (i1), we

assume that the first input selection of each output port is different and each output port

rotates their selection flit-by-flit and port-by-port. For example, the output port 1 selects

firstly the flit from input port 2, i.e. flit B1. At the output time stage o1, the number of the

granted multicast routing requests of each message is 1 as shown in a table at the right

side of the Fig. 5.4(a). Therefore, all the flits must still be held in the input buffers, because

the other three requests of each message have not been granted. At the time stage o2 as

shown in Fig. 5.4(b), each arbiter at the output port now rotates its selection to another

input port. We assume that the rotation is made in an incremental manner (up counting).

Thus the output port 1, for example selects the flit from input port 3, i.e. flit C1.

At the time stage o3 as shown in Fig. 5.4(c), the flit A1 and D1 can be released from

input buffers because all their multicast routing request have been granted. For the flit

A1 for instance, its requests to output port 2 and 4 are granted at time stage o1 and o2,

respectively. Afterwards, its requests to output port 3 and 5 are concurrently granted at
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the time stage o3. Hence, at the time stage o3, all of four multicast routing requests of the

flit A1 have been granted. Thus, it can be released from input port 1. Meanwhile, since

the number of the granted requests of flits B1, C1 and E1 from time stage o1 until o3 are

less than their total multicast requests, i.e. 2, 3 and 2, respectively, then they must be still

held in the input buffers. Finally at the time stage o4 as shown in Fig. 5.4(d), flits B1, C1

and E1 are switched out to their requested output ports, and can be released from the

input ports.

By using the proposed Hold and Release Multicasting Policy explained above, the con-

tenting multicast flits can move out from the multicast dependency after four output

switching time stages. As presented in the figure, all the first line flits (A1, B1, C1, D1 and

E1) of the competing multicast messages can be released from input buffers at the output

time stage o4. The same multicast contention solution is experienced by the second line

flits (A2, B2, C2, D2 and E2) as well as the next line of flits messages.

5.3.2 Multicast Flit Replication Control based on Hold/Release Tag-

ging Mechanism

In order to avoid an improper flit replication during multicast contention handling mech-

anism, a multicast flit replication control must be applied. This subsection will describe

formally how the replication control works in line with hold/release tagging mechanism.

Definition 5.1 Routing Request Matrix R (t) describes the requests of all incoming flits to

access the output ports at time-stage unit t. The elements of the routing request matrix R(t)

consist of the elements of the time-varying input n binary request or the time-varying output m

binary request defined in Def. 3.13 such that

RNinp×Noutp
(t) =

(

rn,1(t), rn,2(t), · · · , rn,Noutp
(t)

)

(5.1)

n = {1, 2, · · · , Ninp − 1, Ninp} = {1 : Ninp}

RNinp×Noutp
(t) =













r1,m=1:Noutp
(t)

r2,m=1:Noutp
(t)

· · ·

rNinp,m=1:Noutp
(t)













(5.2)

We can also define that R (t) : rn,m (t) ∈ {0, 1}, where n and m represent the row and column

coordinates of each matrix element. According to Def. 3.8, n and m are interpreted as the input

and output port number of the router IO port, respectively. The value of the rn,m (t) are either 0 or

1. The element rn,m (t) = 1 if there is a routing request from input port n to output port m, else

its value is rn,m (t) = 0. For a unicast request, ∀n :
∑Noutp

m=1 rn,m (t) = 1, and for multicast request

∀n : 1 <
∑Noutp

m=1 rn,m (t) ≤ Noutp.

If 0 ≤
∑Ninp

n=1 rn,m (t) ≤ 1, then there is no contention to access the output portm. Equ. 5.3 (left-

side) shows an example of theR (t) for the Snapshot 1 in Fig. 5.3 where the IO ports are represented

as port numbers 1, 2, 3, 4 and 5, respectively.
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Fig. 5.4: High multicast traffic contentions in a router and solution with the Hold and Release

Multicasting Policy.
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R(1) =

















0 1 1 0 0

0 0 0 0 0

1 0 0 1 0

0 1 1 0 1

0 0 0 0 0

















; A(1) =

















0 0 1 0 0

0 0 0 0 0

1 0 0 1 0

0 1 0 0 1

0 0 0 0 0

















(5.3)

Definition 5.2 ArbitrationMatrixA (t) describes the grant signal from an arbiter unit to select

one flit from the input port to access its requested output port at time stage t. The Arbitration

Matrix and its array elements are defined as A (t) : an,m (t) ∈ {0, 1}. The form of the Arbitration

Matrix A (t) is strongly dependent on R (t).

ANinp×Noutp
(t) =

(

an,1(t), an,2(t), · · · , an,Noutp
(t)

)

(5.4)

n = {1, 2, · · · , Ninp − 1, Ninp} = {1 : Ninp}

For example, if the output port m = 2 has two requests from input ports as shown in column 2

of matrix R (t) in Equ. 5.3, i.e. rn=1:5,m=2 (t) = [1 0 0 1 0]T , then based on Def. 3.16, Def. 3.17

and Def. 3.18, the set of two possible combinations of the column 2 of the arbitration matrix is

an=1:5,m=2(1) = [0 0 0 1 0]T and an=1:5,m=2(2) = [1 0 0 0 0]T . In other words, in each time-stage

t, where the arbiter rotates the selection among existing requests, the arbiter can only select one

flit from an input port. This means, the sum of the column elements in A must be either 0 or 1, or

0 ≤
∑Ninp

n=1 an,m (t) ≤ 1. Equ. 5.3 (right-side) shows an example of the A (t) for the Snapshot 2 in

Fig. 5.3.

Definition 5.3 Tagged Matrix R∗ (t) : r∗n,m (t) is a support matrix that is useful to determine

whether a flit must be “held” or can be “released” from the input port, and to compute the next

routing request matrix R (t + 1). For each time-stage unit t, the matrix request R (t) will be up-

dated as presented in Equ. 5.5. The function φ contains two subfunction, i.e. fFR∗ : R (t) , A (t) →

R∗ (t) contains operator to form tagged matrix R∗ (t) and fUPR : R∗ (t) → R (t + 1) to update

each element in R (t + 1).

R (t + 1) = φ (R (t) , R∗ (t) , A (t)) (5.5)

fFR∗ : R (t) , A (t) → R∗ (t)

fUPR : R∗ (t) → R (t + 1)

According to Equ. 5.6 and Equ. 5.7, the form of tagged matrix R∗(t) depends on the current

form of the R (t) and A (t).

if n = constant and ∃m : rn,m(t) 6= an,m(t) then

∀m : r−n,m(t) =











1− : rn,m(t) = an,m(t)

1∗ : rn,m(t) 6= an,m(t)

0 : rn,m(t) = 0

(5.6)
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if n = constant and ∀m : rn,m(t) = an,m(t) then

∀m : r+
n,m(t) =

{

0 : rn,m(t) = 0

1+ : rn,m(t) = an,m(t)
(5.7)

If we compare matrices in Equ. 5.3, then according to Equ. 5.6, we can see that there

are two elements which do not match each other, i.e. r1,2 (1) does not match with a1,2 (1),

and r4,3 (1) does not match with a4,3 (1). Therefore, these two elements are tagged with the

symbol (∗) as presented in Equ. 5.9. If minimal one element of row n is tagged with (∗),

then the others elements having the value 1 in same row nwill be markedwith the symbol

(−). As presented in Equ. 5.9, the element r−1,3 (1), r−4,2 (1) and r−4,5 (1) are assigned with (−).

The other elements of the row n having no 1-element, being tagged with symbol (∗) or

(−), are assigned with symbol (+) in accordance with Equ. 5.7. As presented in Equ. 5.9,

all elements in row 3, i.e. r+
3,1 (1) and r+

3,4 (1) are assigned with (+), because there is no

element in the row 3 having tag symbol (∗).

R∗

Ninp×Noutp
(t) =













∀m : r−1,m(t) or r+
1,m(t)

∀m : r−2,m(t) or r+
2,m(t)

· · · · · · · · ·

∀m : r−n,m(t) or r+
n,m(t)













(5.8)

R∗(1) =

















r−1,m(1)

r+
2,m(1)

r+
3,m(1)

r−4,m(1)

r+
5,m(1)

















=

















0 1∗ 1− 0 0

0 0 0 0 0

1+ 0 0 1+ 0

0 1− 1∗ 0 1−

0 0 0 0 0

















(5.9)

Definition 5.4 The Hold/Released Tagging Policy can be applied by observing whether the

row array element of Equ. 5.8 falls in the case according to Equ. 5.6 i.e. r−n,1:Noutp
(t), or in the case

according to Equ. 5.7 i.e. r+
n,1:Noutp

(t). Both Equ. 5.6 and Equ. 5.7 comprise of an antecedence or

condition part and a consequence part.

Definition 5.5 (Data Hold Policy) If the array elements of the row n of the Tagged Matrix

R∗(t) are r−n,1:Noutp
(t), then the flit coming from the input port n, where n = constant, must

be held in the input port l = n, because at time stage t and ∀m, n = const. ⇒ ∃m : rn,m(t) 6=

an,m(t) or there is minimal one element of the rn,1:Noutp
(t) that has not been granted to be switched

out to the requested output port. According to Equ. 5.6, the non-granted element is tagged with

symbol (∗), while the granted element is tagged with symbol (−). Therefore, according to Equ. 5.10,

the next request at time stage t+1 of granted element will be dropped to avoid improper multicast

flit replication.
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if n = const. and r∗n,m(t) = r−n,m(t) then

∀m : rn,m(t + 1) =

{

0 : r∗n,m(t) = 0 or 1−

1 : r∗n,m(t) = 1∗
(5.10)

Definition 5.6 (Data Release Policy) If the array elements of the row n of the Tagged Matrix

R∗(t) are r+
n,1:Noutp

(t) or all elements of the rn,1:Noutp
(t) has been granted to be switched out to the

requested output ports, then the flit coming from the input port n can be released from the input

port n. In Equ. 5.11, we can define that if the flit from input port n is released from the input port

and switched to the output port, then the next considered flit at time stage t + 1 may be 1) a zero

flit (not a data flit, rn,1:Noutp
(t + 1) = ∅), 2) a flit of different message with different unicast or

multicast output routing direction (rn,1:Noutp
(t + 1) 6= rn,1:Noutp

(t)), or 3) a flit that belongs to the

flit that has been released from the input port (rn,1:Noutp
(t + 1) = rn,1:Noutp

(t)).

if n = const. and r∗n,m(t) = r+
n,m(t) then

∀m : rn,m(t + 1) = rFnext

n,m (t + 1) (5.11)

R(2) =

















0 1 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 1 0 1

0 0 0 0 0

















; A(2) =

















0 1 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 1 0 1

0 0 0 0 0

















(5.12)

R∗(2) =

















r+
1,m(2)

r+
2,m(2)

r+
3,m(2)

r+
4,m(2)

r+
5,m(2)

















=

















0 1+ 0 0 0

0 0 0 0 0

1+ 0 0 1+ 0

0 0 1+ 0 1+

0 0 0 0 0

















(5.13)

Lemma 5.1 By using the “hold/release tagging policy” defined in Def. 5.4, improper multicast

flit replication on every router can be avoided.

Proof of Lemma 5.1 If the number of requests of a flit coming from input port n is defined as

N req
s,n such that at time stage t = ts, N

req
s,n =

∑Noutp

m=1 rn,m(ts), then according to Equ. 5.10, a routing

request rn,m(t) that has been granted will be reset at the next time stage t = ts + 1. Therefore,

every routing request rn,m(t) will be only forwarded once to the output port.
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Fig. 5.5: Scheduling unicast requests without contention.
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Fig. 5.6: Scheduling multicast requests without contention.

5.3.3 Proof of the New Theory for Deadlock-Free Multicast Routing

Postulate 5.1 If unicast packets are routed in a certain router such that ∀n :
∑Noutp

m=1 rn,m (t) ≤ 1

(See Def. 5.1), or if multicast packets are routed in a certain router such that ∃n :
∑Noutp

m=1 rn,m (t) >

1, and there is no contention between them to access output link such that ∀m :
∑Ninp

n=1 rn,m (t) ≤

1, then according to Def. 5.2, Def. 3.16 and Def. 3.17, ∵ ∀m : Ts,m = 1 ⇒ ∀t : A(t + 1) = A(t).

Thus, according to Def. 5.3, then ∄r∗n,m(t) = 1∗ ∴ ∀t : R(t) = A(t) or there is no need to apply

for the “Hold/Release Rule”. All unicast packets (without contention) can be released from every

input port, or will not be withheld at every input port at each time stage t.

Fig. 5.5 and Fig. 5.6 show examples of the unicast and multicast requests in a router

without contention, respectively. In Fig. 5.6, we can see that multicast packet E from

input port 2 acquires output ports 1 and 5 without competing with multicast packet F

from input port 5 that acquires the other output ports, i.e. output port 2, 3 and 4.

Postulate 5.2 If unicast packets are routed in a certain router such that ∀n :
∑Noutp

m=1 rn,m (t) ≤ 1

(See Def. 5.1), and there are one or more contentions between them to access output link such

that ∃m :
∑Ninp

n=1 rn,m (t) > 1, according to Def. 5.2, Def. 3.16 and Def. 3.17, the contention

on each output port m can be solved at t = Ts,m where ∀m : ∃Ts,m : rn,m(ts) =
⋃Ts,m

t=ts
an,m(t),

where ∀m : 1 ≤ Ts,m ≤ Ninp. Furthermore according to Def. 5.3, ∵ ∀n :
∑Noutp

m=1 rn,m (t) ≤

1 ⇒ ∀t, n, m : ∄r∗n,m(t) = 1−, or ∀t, m, n : r∗n,m = r+
n,m according to Equ. 5.8. Therefore, the

“Hold/Release Tagging Policy” is only partially applied, i.e. a unicast request rn,m(t) that has not
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Fig. 5.7: Scheduling unicast requests with contention.

been granted at time stage t must wait in the input port l = n. Fig. 5.7 shows an example of this

situation and how the unicast contention is solved.

Based on the postulates mentioned above, the problem can be extended in a situation

called Multicast Routing Requests with Outgoing Contention where multicast packets are

routed in a router with multicast requests such that ∃n :
∑Noutp

m=1 rn,m (t) > 1, and there

are one or more contentions between the multicast requests to acquire the same output

ports or ∃m :
∑Ninp

n=1 rn,m (t) > 1. This extended problem is actually the key problem that

will be solved by our new theory to perform deadlock-free multicast routing without

implementing virtual channels in a wormhole-switched NoC.

Theorem 5.1 The ID-field being part of every flit allows the implemention of a flit-by-flit arbi-

tration and an ID-based routing for interleaving different packets in the same queue, where flits

belonging to the same packet have the same ID-tag on every local communication link. Hence, mul-

ticast deadlock problem can be solved at each router by further applying a “Hold/Release Tagging

Policy” to control and manage conflicting multicast requests.

Proof of Theorem 5.1 The circulating arbitration mechanism can guarantee that one flit of uni-

cast or multicast packets can be forwarded to each outgoing link at each router node, where multi-

cast conflict may occur. After arbitration process at each time t, a hold-release tagging mechanism

can also guarantee that improper replication of the multicast packets can be avoided, because: 1) the

granted multicast bit-requests will be assigned and will not be included again in the next arbitra-

tion process, and 2) the flits having multicast bit-requests will be kept in the FIFO queue until all

its multiple bit-requests are granted.
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The circulating selection result of the arbitration process at each output port may be random

and not uniform. Therefore, there are two possible configurations after the arbitration process,

i.e. 1) all requests of a multicast flit from an input port n are granted at the same time-stage t

(rn,1:Noutp
(t) = an,1:Noutp

(t)), or 2) not all the multicast requests from an input port n are granted

(∀h ∈ ϕreq
n : ∃rn,h(t) 6= an,h(t)). In the situation 1), the multicast flit can be released from FIFO

queue, and in the situation 2), the multicast flit must be held in FIFO queue, and the hold-release

tagging policy and the circulating/rotating flit-by-flit arbitration will then cover the situation.

By circulating the bit-set selection in every column m of A(t) at each time-stage t, where the

circulating combinations of a1:Ninp,m(t) for ∀m (all output ports) are independent each other, then

it is possible, in finite time Tf to find A (Tf) in such a way, that all conflicting multicast flits can

be rescued from multicast dependency.

1. If the amount of requests in every output portm at t = ts isN req
s,m such that 1 ≤ N req

s,m ≤ Ninp

(See Equ. 3.6), then the required number of circulating arbitration time to grant the request

from the input port l ∈ Φreq
m to output m appear at ts is Ts,m = N req

s,m. The probability that

the request rl,m(ts) is selected by grant acknowledge al,m(ts) is Prob(rl,m(ts) = al,m(ts)) =
1

N
req
s,m

. According to Def. 3.15, Def. 3.16, Def. 3.17 and Def. 3.18, then at t = Ts,m we will

achieve that r1:Ninp,m(ts) =
⋃Ts,m

t=ts
a1:Ninp,m(t). The maximum number of requests to an

output port m is Ninp. Hence, if Φreq
m ⊆ Φ, then r1:Ninp,m(ts) =

⋃Ninp

t=1 a1:Ninp,m(t)|ts = 1.

2. If at t = ts there is multicast requests from an input port n such that N req
s,n > 1 (See

Def. 3.14), then we obtain a set of input ports ϕreq
n in such a way that rn,h(ts) = 1 iff

an output port h ∈ ϕreq
n (See Equ. 3.5). The probability that every single request of the

multicast request rn,h(ts) from the input port n is selected by the arbitration unit at the

requested output port h ∈ ϕreq
n , also depends on the number of requests from other input

ports in the set Φreq
h to the same output port h.

In accordance with items 1) and 2) mentioned above, then we can derive a conditional equation

such that the multicast deadlock problem is solved as described in the following equation.

R(ts) =





Ts,1
⋃

t=ts

a1:Ninp,1(t) · · ·

Ts,Noutp
⋃

t=ts

a1:Ninp,Noutp
(t)



 (5.14)

The typical contentionless switching situations presented in Fig. 5.5 and Fig. 5.6 can be solved

at every single time stage such that ∀t, m, n : rn,m(t) = an,m(t). The typical problem presented

in Fig. 5.7 can be solved per output port basis, where at every output port the problem is solved

at t = Ts,m such that ∀m : r1:Ninp,m(ts) =
⋃Ts,m

t=ts
a1:Ninp,m(t). The multicast contention problem

presented e.g. in Fig. 5.3 must be solved per input-output basis because of the existing multicast

requests.

Because the circulating arbitration order at every input port m is not uniform or independent

from each other, then there will be many possible combinations of A(t) at every time stage t. The

arbitration time solution Ts,m at every output m ∈ ϕ may vary and depends on the number of re-

questsN req
m to the output port m (Ts,m = N req

m ). However, we can guarantee that, at the maximum
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time of t = Tf such that ∀m : Tf = Tmax
s,m = max(Ts,m) or Tf = max(Ts,1, Ts,2, · · · , Ts,Noutp

),

then the multicast deadlock dependency problem on each router is solved at Tf if there is no con-

gestion in the outgoing links, ∵ at t = Tf ⇒ ∀m :
⋃Tf

t=ts a1:Ninp,m(t) =
⋃Ts,m

t=ts
a1:Ninp,m(t).

Therefore, the conditional equation (Equ. 5.14) is fulfilled, and by following the Proofs of

Lemma 4.1, Lemma 4.2 and Lemma 5.1 then the multicast deadlock and dependency problems

on each router is solved without improper multicast flit replication. In other words, all requests

depicted in R(ts) (at initial time ts) will finally receive a grant acknowledge A(Tf ) in such a way

that all flits appear at t = ts from all input ports n ∈ Φ would have been switched out to the

output ports m ∈ ϕ or would have been rescued from the multicast contention in the router in

finite time stage Tf where 1 ≤ Tf ≤ Ninp. If congestion occurs at any outgoing link then the

solution is postponed for Twf time stage. Hence, the problem is solved at t = Tf + Twf , where Twf

is the number of time stages to wait for a free data slot available in the queue of the congested link

connected directly to the most requested output port.

The descriptions given above have proved the Theorem 5.1 because the multicast

problem can be solved in such a way that the contenting or conflicting multicast packet

can be rescued from the multicast dependency in a router. If the multicast dependency

(deadlock) problem can be solved on every router Rc ∈ ℜ, then the network is free from

multicast deadlock problem as long as the routing algorithm used to route unicast and

multicast packets does not form cyclic dependencies. The detailed proof of the last state-

ment can be found in [83], [58], [62].

Tf depends on the concrete multicast conflict situation in each router. For instance, in

the multicast conflict case presented in Fig. 5.3, the flit coming from the PORT 3 port can

be rescued from the multicast-dependency after generating one in-column bit-set com-

bination of the arbitration matrix A (1) as shown in Snapshot 2. While the flits coming

from PORT 1 and PORT 4 ports can be rescued after generating two in-column bit-set

combinations of the arbitration matrices A (1), and A (2) as shown in Snapshot 2 and

Snapshot 4, respectively. From Fig. 5.3, we can see that for Ninp = Noutp = 5, then the

numbers of request at every output port m ∈ {1, 2, 3, 4, 5} are N req
s,1 = N req

s,4 = N req
s,5 = 1

and N req
s,2 = N req

s,3 = 2. Thus, ∀m = {1, 2, 3, 4, 5} then Tf = max(Ts,1, Ts,2, Ts,3, Ts,4, Ts,5) =

max(1, 2, 2, 1, 1) = 2. Therefore, the multicast dependency deadlock depicted in Fig. 5.3

can be solved in the next finite time stage Tf = 2. The rotating output selection per out-

put port in four successive time stage of the problem shown in Fig. 5.3 is presented in the

following tabular.

t m = 1 m = 2 m = 3 m = 4 m = 5

1 : a3,1(1) a4,2(1) a1,3(1) a3,4(1) a4,5(1)

2 : a3,1(2) a1,2(2) a4,3(2) a3,4(2) a4,5(2)

3 : a3,1(3) a4,2(3) a1,3(3) a3,4(3) a4,5(3)

4 : a3,1(4) a1,2(4) a4,3(4) a3,4(4) a4,5(4)

· · · · · · · · · · · · · · · · · ·

Ts,1 = 1 Ts,2 = 2 Ts,3 = 2 Ts,4 = 1 Ts,5 = 1
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Theorem 5.2 If the multicast dependency and deadlock problems can be solved at each router as

mentioned in Theorem 5.1, then multicast deadlock configurations in the network can be solved,

if: 1) the routing algorithm used to route the unicast and multicast packets does not perform cyclic

dependency, and 2) a data dropping mechanism at each outgoing communication link is applied to

packets that cannot be assigned to an ID slot on the communication link.

Proof of Theorem 5.2 The Theorem 5.2 can be proved if Theorem 5.1 can be proved and the

conditions mentioned in Theorem 5.2 are fulfilled. Therefore, we will explain and prove the need

for the necessary conditions mentioned in the Theorem 5.2 as follow.

1. The necessary condition mentioned by item 1) in the Theorem 5.2 is needed because routing

algorithm used to route unicast and multicast packets are the same according to the pro-

posed hardware solution. Therefore, if the used routing algorithm does not perform cyclic

dependency, then the proposed tree-based multicast routing is also free from deadlock con-

figuration. The proof of the deadlock-freeness in term of the cyclic dependency problem is

presented in detail in [83], [58] and [62].

2. The necessary condition mentioned by the item 2) in the Theorem 5.2 is required because if

the data flits are not dropped, then they will stall in the router especially if they must wait

for other messages to free one ID slot for a very long time. In this case, the data flits will

be stagnant and occupy many buffers in the upstream channels, and do not give spaces for

other messages to flow (chained blocking).

5.4 Tree-basedMulticast Router Implementationwith Best-

Effort Communication Protocol

Two specific routing behaviors of the tree-based multicast routing will be presented. The

specificmulticast routing behaviors which differentiate it from the unicast routing version

are exhibited when the multicast header flits will program the routing reservation table

autonomously and reserve a local ID slot on every communication link. The multicast

routing presented in this section is the best-effort version of the multicast routing. The

guaranteed-service version will be further explored in Chap. 7.

Fig. 5.8 presents the specific packet format that should be used to perform a deadlock-

free multicast routing and to enable the hold-release tagging mechanism described in

Section 5.3.1. A message or a streaming data is divided into several flow control digits

called flits. The total bit-width of each flit of the message or streaming data is btotal =

btype + btag + bword, where btype is the bit-width of the flit type field, btag is the bit-width of

the ID-tag field and bword is the bit width of the data word. Together with a data word,

each flit brings the two additional control bit-fields.
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Fig. 5.8: Specific multicast packet format.

The number of header flitNhf represents the number of the multicast destination Ndest

(Nhf = Ndest). The header flits contains information of the source address from which

node the message is injected and the target address to which nodes the message will be

sent. If Ndf number of data flits will be sent to Ndest number of multicast target, then the

total number of flits injected to the NoC is NF lit = Ndf + Nhf + [Tail].

5.4.1 Runtime Programming of Multicast Routing Reservation Table

Fig. 5.9 exhibits snapshots of the multicasting procedure, when three types of flits, i.e.

header, databody and tail flits, are routed in the NoC router. The figure also presents how

the routing reservation table (RRT) is programmed autonomously by themulticast header

flits. Afterwards, the databody and tail flits will just follow the routing paths made by

the header flits in every NoC router. For the sake of simplicity, only the RRT unit of the

Western incoming port is presented in Fig. 5.9.

• 1st Header flit. In Fig. 5.9(a), the first header flit is coming from the West (W) port

with ID-tag 2. The first header flit is now being forwarded to the Local (L) port

with the new ID-tag 0 (It is assumed that the packet is the first packet which uses

the outgoing port. Hence, the packet header is allocated to the first free ID-slot, i.e.

ID-tag 0). The Routing State Machine (RSM) unit has found an appropriate routing

direction (the LOCAL direction in this case) and set the LOCAL slot of routing re-

quest slots in the register number 2 (in accordance with its ID-tag number) of the

RRT unit.

• 2nd Header flit. In Fig. 5.9(b), the second header flit is now being forwarded to the

North (N) outgoing link with the new ID-tag 1. The RSM unit has found again an

appropriate routing direction (the North output direction in this case) and set the

East slot of routing request slots in the register number 2 of the RRT unit.

• 3rd Header flit. The situation in Fig. 5.9(c) depicts the same mechanism as shown in

the two previous snapshots, where in this case the third header flit is routed to the

East (E) outgoing link with the new ID-tag 1.
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Fig. 5.9: Multicast Routing Phases.

• Databody/Payload flit. The register with index number 2 in the RRT shown in Fig. 5.9(d)

has now three routing direction assignments in the routing request slots i.e., East

(E), North (N) and Local (L). Therefore, all payload (databody) flits coming from

the East port with ID-tag 2 will be forwarded simultaneously into the three outgo-

ing links to track the paths that have been set up by the multicast header flits as

shown in Fig. 5.9(d).

• As long as the routing paths set up by the header flits from a source to multiple

(multicast) destinations have not closed or terminated by a special control flit called

tail flit, then the reserved local ID slots along the routing paths can be still used by a

processing element unit in the source node to send multicast data continuously. As

presented in Fig. 5.9(e), a tail flit with ID-tag 2 has been routed simultaneously to

the multiple output directions. Hence, the assignments of the routing request slots

in the register number 2 of the RRT unit are removed from the table.
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The routing engine algorithm for XHiNoC unicast version has been presented in Alg. 7

in Chap. 3. The routing engine algorithm for the XHiNoC multicast version is presented

in Alg. 10. In Fig. 5.9, the mechanism to program the routing request slots of the RRT

unit by the multicast header flits has been presented clearly. Alg. 10 presents the logical

view to realize the multicast routing operation explained in the above items. In order to

comprehend easily the operation in the Alg. 10, Def. 5.7 is given.

Definition 5.7 (Multicast Routing Reservation Slot) A routing slot of a Multicast Routing

Reservation Table of the RE unit at an input port of a multicast router is defined as

Tmcs(k, rdir) ∈ {0, 1} (5.15)

where k ∈ Ω and rdir ∈ D = {1, 2, 3, · · · , Noutp}. The definition of the Multicast Routing Reser-

vation Table can be still defined as T (k), i.e. similar to the definition of the Routing Reservation

Table as previously defined by Def. 3.11 in Chap.3. Therefore, we can further define T (k) as a

binary-element vector such that

T (k) = [Tmcs(k, 1) Tmcs(k, 2) Tmcs(k, 3) · · · Tmcs(k, Noutp)] . (5.16)

Hence, the routing reservation table T has 2D size of row × column = Nslot × Noutp.

Based on Def. 5.7, a binary-encoded multicast routing direction rbin
dir is introduced and

has a size of Noutp number of bits (binary elements). If we see the operation to program the

RRT as presented in Fig. 5.9(a), Fig. 5.9(b) and Fig. 5.9(c), then it looks that the slot number

2 in the RRT is programmed based on Def. 5.7, when the header flits with ID-tag 2 are

coming to the input port. The routing directions (and their binary-encoded value) made

based on destination address information (Adest) on the header flits are rdir = 5 [0 0 0 0 1],

rdir = 1 [1 0 0 0 0] and rdir = 2 [0 1 0 0 0], respectively. Therefore, the routing directions are

written in the slot column numbers 5, 1 and 2 of the RRT slot row number 2 in accordance

with the routing direction made for the headers and the ID-tag of the header flits, i.e.

Tmcs(2, 5) = 1, Tmcs(2, 1) = 1 and Tmcs(2, 1) = 1.

Thus, in conjunction with Def. 5.7, we obtain that T (2) = [1 1 0 0 1]. According to

Def. 5.7, the number of the routing reservation row-column slots in the RRT is (H +1)×5.

5.4.2 Runtime Multicast Local ID Slot Reservation

In this chapter, a specific behavior of the XHiNoCmulticast version to update andmanage

the ID slot table is presented in Fig. 5.10. In Alg. 9, the operation of the the ID Update

andManagement has been presented in Chap. 3 for general XHiNoC version with unicast

data communication protocol. In this chapter, the logical/algorithmical view to update

and manage the ID slot table for XHiNoC version with multicast data communication

service is presented again in Alg. 11. The main difference between both algorithms is

shown in the ID update operation for the header flit type.
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Alg. 10 Runtime ID-based Multicast Routing Mechanism

Read Data Flit from Queue : Fn (type, ID)

1: Ftype ⇐ type

2: Adest is obtained from Header flits

3: BEGIN Multicast routing (rbin
dir )

4: if Ftype is Header then

5: rdir ⇐ fRSM (Adest)

6: T (ID, rdir) ⇐ 1

7: rbin
dir = enc(rdir)

8: else if Ftype is Response then

9: rdir ⇐ fRSM (Adest)

10: rbin
dir = enc(rdir)

11: else if Ftype is Databody then

12: rbin
dir ⇐ T (ID)

13: else if Ftype is Tail then

14: rbin
dir ⇐ T (ID)

15: T (ID) ⇐ ∅

16: end if

17: END Multicast routing
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Fig. 5.10: Local ID-tag update for multicast header flits.

The conceptional of view of the ID-tag update for header flits of the multicast mes-

sages is shown in Fig. 5.10. When a leading multicast header is switched out to an output

port, the information of the current ID-tag and the input port number from where the

header comes will be checked in the ID Slot Table. If a match information is found then

the new ID-tag can be fetched directly from the ID Slot Table. As shown in Fig. 5.10(a),

a header flit with current ID-tag 2 from input port 2 finds the match information in slot

number 2. Hence, it uses the ID slot number 2 as its new ID-tag. If a match is not found,

then a free ID slot must be found from the Table. as presented in Fig. 5.10(b). ID slot num-

ber 2 is then found free and will be used as the new ID-tag for the header. Concurrently,

the previous ID-tag and the input port number is written in the newly found slot number

2.
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Fig. 5.11: Mesh-Planar-based network and possible minimal planar adaptive routing paths.

This mechanism is run to guarantee that multicast headers belonging to the samemul-

ticast group will have the same ID-tag in order to keep the principle data flow regulation

of the XHiNoC concept. The example ID update mechanisms show us indirectly that

the first leading multicast header will always find firstly a free ID tag. The consecutive

headers and payload data, which flow on the same link and belong to the same multicast

group with the first leading header, will then just fetch the new ID-tag by indexing the ID

Slot Table with the matching information.

5.5 Adaptive Tree-based Multicast Routing

Alternative approach to provide a higher degree of routing adaptiveness is by using a

2D planar adaptive routing. The planar adaptive routing algorithm is firstly introduced

in [46]. The main difference between the method shown in [46] and our current NoC

router implementation is the replacement of virtual channels with double-physical chan-

nels connection connecting North and South input-output ports of the router. The planar

network architecture will be explored in the following subsection.

5.5.1 2D Planar Adaptive Routing Algorithm

Fig. 5.11(a) shows a 2Dmesh-planar topology, where the NoC is divided into two subnets,

i.e. X+ (increment) subnetwork in solid lines and X− (decrement) subnetwork. The links

of the X+ and X− subnets are described in solid and dashed lines, respectively. If the

xoffset = xtarget − xsource ≥ 0, packets will be routed through the X+ subnetwork, while
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Alg. 11 Runtime Local ID-tag Update for Multicast Routing

Outgoing Data Flit : Fn (type, ID)

Input Arbitration : n = {1, 2, · · · , Ninp}

NusedID : number of used/reserved ID slots

Nslot − 1 : Slot reserved for control purpose (Nslot − 1 = H)

1: Ftype ⇐ type; IDold ⇐ ID; Ffrom ⇐ n

2: BEGIN ID Update

3: if Ftype is Header then

4: if IDold = Nslot − 1 then

5: IDnew ⇐ Nslot − 1

6: else if IDold 6= Nslot − 1 then

7: for k = 0 to k = Nslot − 2 do

8: if ∃k : S(k) = (IDold, Ffrom) then

9: IDnew ⇐ k

10: else if ∄k : S(k) = (IDold, Ffrom) then

11: for k = 0 to k = Nslot − 1 do

12: if ∃k : k 6= Nslot − 1: Sk is true then

13: S(k) ⇐ (IDold, Ffrom); Sk ⇐ false /* the ID Slot is used now */

14: IDnew ⇐ k; NusedID ⇐ NusedID + 1

15: else

16: IDnew ⇐ Nslot − 1

17: end if

18: end for

19: end if

20: end for

21: end if

22: else if Ftype is Databody then

23: for k = 0 to k = Nslot − 2 do

24: if ∃k : S(k) = (IDold, Ffrom) then

25: IDnew ⇐ k

26: else if ∄k : S(k) = (IDold, Ffrom) then

27: IDnew ⇐ ∅; The Databody flit is dropped

28: end if

29: end for

30: else if Ftype is Tail then

31: NusedID ⇐ NusedID − 1

32: for k = 0 to k = Nslot − 2 do

33: if ∃k : S(k) = (IDold, Ffrom) then

34: IDnew ⇐ k; S(k) ⇐ (∅, ∅); Sk ⇐ true /* the ID Slot is now free */

35: else if ∄k : S(k) = (IDold, Ffrom) then

36: IDnew ⇐ ∅; S(k) ⇐ (∅, ∅); Sk ⇐ true /* the ID Slot is now free */

37: The Tail flit is dropped

38: end if

39: end for

40: else if Ftype is Response then

41: IDnew ⇐ Nslot − 1

42: end if

43: IDnew ⇒ ID

44: END ID Update
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if the xoffset ≤ 0, packets will be routed through the X− subnetwork. Once a packet is

routed to a subnetwork, it will not move to another subnet. By using such routing rule,

the minimal planar adaptive routing algorithm will be free from cyclic dependency (free

from deadlock configuration).

The main advantage of the this NoC topology architecture compared with the turn

models approach commonly used in the standard-mesh structure is that minimal routing

adaptivity can be made in all non-zero offset directions with maximal two alternative

routing directions. For examples as shown in Fig. 5.11(a), when the target is located in

North-East area (node 1 to 12), South-East area (node 21 to 18), North-West area (node

5 to 8), South-West area (node 25 to 14), then packets can form three alternative paths

adaptively.

Alg. 12 presents the 2D planar adaptive routing algorithm used for the 2Dmesh planar

multicast router. The routing algorithm is divided into two subrouting codes for X+ and

X− subnetwork in the 2Dmesh planar topology. In the X+ Subnet, the set of output ports

that can be selected are {EAST, SOUTH 1, NORTH 1, LOCAL}. In the X− Subnet, the

set of output ports that can be selected are {WEST, SOUTH 2, NORTH 2, LOCAL}.

5.5.2 Inefficient Spanning Tree Problem

An efficient adaptive multicast routing is required to optimize communication energy.

Fig. 5.12(a) shows an example of an inefficient tree-based adaptive multicast routing. A

tree-based multicast message coming from the WEST input port of the router R1 forms

two crossing branches in different routing direction i.e., a branch to NORTH (branch A)

and a branch to EAST (branch B) direction. We can assume that the branches A and B

are made by header flit 1 and header flit 2, respectively, which belongs to the same mul-

ticast message that will be routed to multicast destinations (xt1, yt1) and (xt2, yt2), respec-

tively. In the router R3, the multicast message is routed from SOUTH to EAST (branch A).

While in the router R2, the multicast message is routed fromWEST to NORTH (branch B).

Hence, these two branches are then routed to the same router (router R4). In this case, the

multicast tree branches are inefficient in term of communication energy. The communi-

cation energy can be reduced if the router R1 performs only the multicast tree branch A

or branch B.

Fig. 5.12(b) shows 4 possible situations which occur in the router R4 as the further dis-

advantageous consequences of the inefficientmulticast tree branches formed in Fig. 5.12(a).

The situations could happen because the number of free ID slots on each communica-

tion link as the parameter of the adaptive routing algorithm may change dynamically.

Fig. 5.12(b)(a) and (b) show tree-branch crossing problems, in which the inefficient paths

of the branches are further routed in different outgoing ports. If we assume that the cur-

rent address of router R4 is (xcurr, ycurr) and the target nodes of the tree branches A and B

are (xt1, yt1) and (xt2, yt2) such that xoffset1 = xt1 − xcurr > 0 and yoffset1 = yt1 − ycurr > 0

as well as xoffset2 = xt2 − xcurr > 0 and yoffset2 = yt2 − ycurr > 0, then in any circumstance,
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Alg. 12 2D Planar Adaptive Routing Algorithm

Network is partitioned into two subnets: X+ and X− Subnet.

Set of output ports in X+ Subnet: {EAST, SOUTH 1, NORTH 1, LOCAL}.

Set of output ports in X− Subnet: {WEST, SOUTH 2, NORTH 2, LOCAL}.

Select(m1, m2) is selection function between output port m1 or m2.

1: Xoffs = Xtarget − Xsource

2: Yoffs = Ytarget − Ysource

3: while Packet is in Subnet X+ i.e.(Xoffs ≥ 0) do

4: if Xoffs = 0 and Yoffs = 0 then

5: Routing = LOCAL

6: else if Xoffs = 0 and Yoffs > 0 then

7: Routing = NORTH 1

8: else if Xoffs = 0 and Yoffs < 0 then

9: Routing = SOUTH 1

10: else if Xoffs > 0 and Yoffs = 0 then

11: Routing = EAST

12: else if Xoffs > 0 and Yoffs > 0 then

13: Routing=Select(NORTH 1, EAST )

14: else if Xoffs > 0 and Yoffs < 0 then

15: Routing=Select(SOUTH 1, EAST )

16: end if

17: end while

18: while Packet is in Subnet X− i.e.(Xoffs ≤ 0) do

19: if Xoffs = 0 and Yoffs = 0 then

20: Routing = LOCAL

21: else if Xoffs = 0 and Yoffs > 0 then

22: Routing = NORTH 2

23: else if Xoffs = 0 and Yoffs < 0 then

24: Routing = SOUTH 2

25: else if Xoffs < 0 and Yoffs = 0 then

26: Routing = WEST

27: else if Xoffs < 0 and Yoffs > 0 then

28: Routing=Select(NORTH 2, WEST )

29: else if Xoffs < 0 and Yoffs < 0 then

30: Routing=Select(SOUTH 2, WEST )

31: end if

32: end while
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Fig. 5.12: Inefficient branches of multicast tree problem.

the inefficient tree branch might happen again in the next intermediate nodes.

Fig. 5.12(b)(c) and (d) exhibit tree-branch interference problem, in which the inefficient

branches are further interferred into the same outgoing port. This situation will lead to

inefficient multicast communication time (increase of communication latency) because of

the self-contention problem. Two multicast messages will be forwarded from different

input ports to the same output port but with regard to contents, the message is similar.

5.5.3 Solution for the Inefficient Spanning Tree Problem

The problems presented in Fig. 5.12(a) and Fig. 5.12(b) are not only inefficient in terms

of communication energy because the inefficient path overburden the NoC, but also it

can degrade the data rate of the multicast traffics. Thus, it reduces the NoC performance

while increases power consumption.

We solve the aforementioned problem not by designing a specific multicast path opti-

mization algorithm that should be run at compile time. The path optimization algorithms

such as optimal spanning tree algorithm are only suitable for source routing approach,

where routing paths for the overall paths of a multicast message from source to desti-

nation node are made at source node before the message is injected to the network. In

our NoC, the routing algorithm used to route unicast and multicast messages is the same,

and the routing functions are distributed locally on every port of each router. Hence, we

do not implement the path optimization algorithm for initiation-time-efficiency purpose.

In order to avoid such problem, each time a routing engine has two alternative output

ports to make a routing decision, then a selection strategy between two alternative output

ports is made. The simple abstract view of the adaptive selection strategy is presented in

the Alg. 13. The basic concept of the proposed algorithm is the identification of track

records of other previously-routed header flits that belong to the same multicast message

in order to find the energy-efficient routing branches of the multicast tree. The logical
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Alg. 13Multicast Adaptive Routing Selection Strategy (Abstract view)
1: Begin Function Select(port m1, port m2)

2: if Routing can be made to port m1 and port m2 then

3: if Routing for the same Multicast Packet has been made to port m1 and not yet to port m2 then

4: Return Routing = port m1

5: else if Routing for the same Multicast Packet has been made to port m2 and not yet to port m1 then

6: Return Routing = port m2

7: else if Routing for the same Multicast Packet has not been made to port m1 and port m2, or has

been made both to port m1 and port m2 then

8: if UsedID(port m1) < UsedID(port m2) then

9: Return Routing = port m1

10: else

11: Return Routing = port m2

12: end if

13: end if

14: end if

15: End Function

implementation of the abstract view of the proposed adaptive selection strategy to avoid

inefficient spanning tree (branches of tree) is presented in Alg. 14. In the algorithm, it

looks like routing decision is made based on the contents of the routing reservation slots

and the number of used (reserved) ID slots in the two alternative output ports.

Alg. 14Multicast Adaptive Routing Selection Strategy (Logical view)

Incoming Data Flit : Fn (type, ID)

T (k, m) : Routing reservation slot of a flit with ID=k to direction m

UsedID(m) : Number of used/reserved ID slots in direction m

1: Begin Function Select(m1, m2)

2: k ⇐ ID

3: if ¬T (k, m1) & UsedID(m1) ≤ ¬T (k, m2) & UsedID(m2) then

4: Return m1

5: else if ¬T (k, m1) & UsedID(m1) > ¬T (k, m2) & UsedID(m2) then

6: Return m2

7: end if

8: End Function

Before running a real experiment, Fig. 5.13 will show us the different routing paths

that will be performed by the aforementioned tree-based multicast routing methods (ex-

cept for the wf-v1 multicast method). As presented in the figure, a multicast message is

injected from node (2,2) to 10 multicast destinations. The ’xy’ multicast router performes

24 traffics in the NoC. While the ’plnr’ and ’wf-v2’ multicast routers perform only 19 and

21 traffics in the NoC, respectively. It means that the planar adaptive multicast router can

potentially reduce the communication energy of the multicast data transmission. The fol-

lowing experiment will show us the result of a more complex data distribution scenario.
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Tab. 5.1: Unicast and Multicast communication groups for the random multicast test traffic sce-

nario.
Comm. Group Type source targ. 1 targ. 2 targ. 3 targ. 4 targ. 5 targ. 6 targ. 7 targ. 8

Comm. 1 M6 (1,4) (6,4) (7,3) (4,2) (3,0) (3,5) (4,7) – –
Comm. 2 M6 (7,4) (0,4) (3,6) (2,6) (2,2) (1,1) (4,0) – –
Comm. 3 M6 (0,3) (6,3) (3,2) (4,1) (7,4) (4,6) (3,7) – –
Comm. 4 M6 (6,3) (0,3) (4,5) (3,1) (2,1) (1,0) (2,7) – –
Comm. 5 M6 (1,7) (7,6) (5,5) (6,2) (6,0) (2,0) (0,1) – –
Comm. 6 M6 (4,4) (1,4) (1,2) (7,1) (5,0) (6,5) (6,6) – –
Comm. 7 M8 (1,0) (7,0) (6,1) (5,2) (2,4) (7,5) (6,7) (0,6) (1,7)
Comm. 8 M8 (7,1) (2,3 (5,4 (2,5 (1,5) (5,6) (0,7) (7,7) (0,0)
Comm. 9 M8 (7,6) (1,6) (0,5) (5,3) (1,3) (0,2) (5,1) (5,7) (7,2)
Comm. 10 U (0,0) (4,4) – – – – – – –
Comm. 11 U (0,7) (4,3) – – – – – – –
Comm. 12 U (7,0) (3,4) – – – – – – –
Comm. 13 U (7,7) (3,3) – – – – – – –
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Fig. 5.15: Average bandwidth and tail flit acceptance latency measurement versus expected data

injection rates for multicast random test scenario.

5.6 Experimental Result

In the experimental results presented in this section, four XHiNoC multicast router pro-

totypes with different multicast routing algorithms were compared. The first prototypes

is the multicast router with planar adaptive routing algorithm in the mesh planar NoC

architecture, which is presented with ’plnr’ acronym in the figures. The second proto-

types uses XY static multicast routing algorithm in the mesh standard architecture (’xy’).

The third and fourth prototypes are the multicast routers in the standard mesh architec-

ture with adaptive West-First (WF) routing algorithm (’wf-v1’ and ’wf-v2’). The adaptive

WF multicast router version 1 (’wf-v1’) is the multicast router without the implementa-

tion of the adaptive selection strategy to avoid inefficient spanning tree (branches of the

multicast tree). Thus, the multicast trees are formed freely without considering the track

records of the other previously-routed header flits belonging to the samemulticast group.

The adaptive WF multicast router version 2 (’wf-v1’) implements the adaptive selection

strategy presented in the Alg. 14 to avoid such inefficient spanning tree problem.

The experiment is set up by using a multicast random data distribution (traffic) sce-

nario to verify the theorem and methodology of the proposed deadlock-free multicast
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Fig. 5.16: Average actual bandwidth versus workloads for multicast random test scenario.

routing. Fig. 5.14 shows the distribution of the source-destination unicast-multicast com-

munication partners in the 2D 8 × 8 mesh architecture (64 network nodes). The numer-

ical symbol in the bottom and the left sides of the mesh network represent the 2D node

x-address and y-address. In the figure, it looks like 9 multicast communication partners

(M6,M8) and 4 unicast communication pairs (U) are presented. Three of 9 multicast com-

munication sources have 8 multicast destinations (M8), while the remaining six multicast

sources have 6 multicast targets (M6).

Every NoC node in Fig. 5.14 is depicted with a square block together with the nu-

merical symbols. A numerical symbol in the small square block at the top-left side of

a NoC router node represents the node number of the node. The numerical symbol at

the top-right side in the NoC router node represents the communication partner of the

node, from which the NoC router node will receive a message. For example, the network

node at node address (2, 1) (2D node address, 2 is the x-horizontal address and 1 is the

y-vertical address) has node number 11. At the right side in the mesh node 11, we see the

numerical value 31. It means that the mesh node number 11 located in the node address

(2, 1) will receive packet from mesh node 31 located in the node address (6, 3).

The boldface symbols (U, 6 andM8) at the bottom-left of the white-colored box repre-

sent that the network node will send a unicast message (U) or a multicast message with

a number of 6 target nodes (M6) or 8 target nodes (M8). For example, the mesh node
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Fig. 5.17: Tail flit acceptance latency versus workloads for multicast random test scenario.

address (7, 1) (mesh node number 16) is symbolized with (M8). It means that this mesh

node will send a multicast message into 8 destination nodes. We can find the target nodes

of the multicast message sent from the mesh node number 16 by looking for mesh nodes

having numerical symbol 16 at the right-side in each mesh node. In order to find easily

the partners of each unicast and multicast communications, Table 5.1 presents the uni-

cast andmulticast communication partners/groups of the source-destination distribution

presented in Fig. 5.14.

The measurements of the average bandwidth and tail flit acceptance latency with var-

ious expected data injection rates are presented in Fig. 5.15. The measurements are made

for five different expected data injection rates, i.e. 0.1, 0.125, 0.2, 0.25 and 0.5 flits/cycle

(fpc). It looks that the tree-based multicast router with planar adaptive routing algorithm

shows the best performance both in terms of the average bandwidth (Fig. 5.15(a)) and

the average latency of the tail flits acceptance (Fig. 5.15(b)) for all expected data rates.

If the expected data injection rates are very low (e.g. 0.1 fpc), then the performance of

the multicast routers will be the same. The performance of the planar adaptive multicast

router will be significantly better compared to the other multicast routers when the data

are expected to be transmitted with higher data rates.

Fig. 5.16 presents the average actual bandwidth measurements for different sizes of

workload per data producer nodes with different expected data injection rates. When the
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Fig. 5.18: Reserved (used) total ID slots for multicast random test scenario.

expected data injection rates are relatively fast (approximate themaximum allowable data

injection rate, 0.5 fpc), then differences of the actual bandwidth measurements between

the four different multicast routing algorithms are significant. When the expected data

injection rates are slower, then the performances of the four tree-based multicast routing

algorithms are nearly similar.

As presented in Fig. 5.16(d), when the expected injection rate is about 0.1 fpc (flits per

cycle) for every data producer node, then the average actual measured communication

bandwidth is almost similar for all tree-based multicast routing algorithms, i.e. about

399.86− 399.99 fpc. In general, the average bandwidth for different workload sizes (with

fixed expected data rates per producer node) tends to move in a steady value. The ten-

dency will be more significant when the expected data rates are slower such that the NoC

will not be saturated.

Fig. 5.17 presents the average tail flit acceptance latency for different sizes of workload

per data producer nodes with different expected data injection rates. In line with the re-

sults presented in Fig. 5.16, when the expected data injection rates are relatively fast, then

differences of the tail flits acceptance latency measurements between the four different

multicast routing algorithms are also significant. The average latency of the tail flits ac-

ceptances of the different tree-based multicast routings also tends to reach a steady value

when the expected data injection rate per producer node is slower such that the NoC is

not saturated.

Fig. 5.17(d) shows that the average latency of the tail flit acceptance of the different

multicast routings are similar for various workload sizes when the expected data rate

is about 0.1 fpc. We can see that the similar average tail flit acceptance latency of all

proposed tree-based multicast routing algorithms exhibited in Fig. 5.17(d) is due to the

closely similar average communication bandwidth shown in Fig. 5.16(d) The average la-

tencies tend to increase linearly if the workload sizes are increased for each multicast

routing algorithms in the non-saturating condition, i.e. in the case of slower expected

data rates.
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Fig. 5.19: 3D views of the total ID slot reservation on every NoC router for multicast random test

scenario.

Fig. 5.18 shows the 2D view of the total ID slot reservations on every NoC router node.

Fig. 5.18(a) presents the total reserved ID slots for the NoC router node 1 until node 32,

while Fig. 5.18(a) presents the total ID slots reservation for the NoC router node 33 until

node 64. The 3D views of the reserved ID slots distribution are shown in Fig. 5.19. Each

figure presents the comparison of the ID slots distribution between two tree-based mul-

ticast routing algorithms. For example, Fig. 5.19(a) exhibits the comparison between the

tree-based planar adaptive multicast routing (’plnr’) and the tree-based static multicast

routing algorithm (’xy’), and Fig. 5.19(f) exhibits the comparison between the tree-based

west-first adaptive multicast routing algorithm with (’wf-v2’) and without (’wf-v1’) se-

lection strategy to avoid inefficient branches of tree-based multicasting.

As shown in Fig. 5.19(a), the ID slot reservation of the tree-based multicast router by

using static XY routing algorithm is almost uniform. This traffic distribution can be even
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Tab. 5.2: Total performed traffics on each link direction for different tree-based static and adaptive

multicast routing methods.

Routers South2 North2 South West North East TOTAL

plnr 30 28 34 65 27 46 230

xy – – 83 40 89 36 248

wf-v2 – – 79 40 80 46 245

wf-v1 – – 85 40 81 86 292

predicted and can be estimated easily. In general, the tree-based multicast routers with

adaptive routing algorithms tends to move the traffic into the center area in the NoC. This

characteristic can be overviewed through the distributions of the ID slot reservation on

each router in the NoC. However, the ID slot reservation patterns are strongly dependent

on the patterns of the given traffic scenarios.

Table 5.2 shows the comparisons of the total performed communication traffics be-

tween the four tree-based multicast router prototypes. The number of the traffics rep-

resents the number of communication resources (communication links) used to route the

unicast/multicast message from source to destination nodes. Therefore, this performance

metric can be a representation of the communication energy of the evaluated multicast

routers. The total traffic on each link direction for the four different multicast routing im-

plementation are also presented in the table. It seems that the planar adaptive multicast

router (’plnr’) consumes less communication resources than the other multicast routers,

i.e. about 230 communication links followed by the adaptive multicast routing with effi-

cient spanning tree method (’wf-v2’), and then the static tree-based multicast router that

uses XY routing algorithm (’xy’).

As shown in Table 5.2, the multicast router with minimal adaptive routing algorithm,

without using the technique to avoid inefficient spanning tree (’wf-v1’), performs the

largest number of traffic, i.e. 292 traffics. This value is even greater than the static tree-

based multicast router, i.e. 248 performed traffics. By using the same adaptive routing

algorithm with the technique to avoid the inefficient spanning tree (’wf-v2’), the total

number of traffics is reduced to 245 traffics, which is also more efficient than the multicast

router with static XY routing. The reduction of the total traffic denotes the effectiveness

of the solution to avoid the inefficient spanning tree as explained in Section 5.5.3.

In Chap. 3, the implementation of the link-level flit flow control together with the

automatic injection rate control mechanism have been explained. By using such control

mechanisms, the average actual injection and acceptance rates at each source-destination

node (end-to-end communication flow) can be kept equivalent in order to guarantee lose-

less data delivery. Fig. 5.20 present the transient response measurements of the actual

injection rate at source node and actual acceptance rates at multicast target nodes for

multicast communication 1, 2, 3 and 4 by using tree-based multicast router with static XY

routing algorithm. The four multicast communications have six multicast destinations
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(d) Multicast Comm. 4

Fig. 5.20: Expected, actual injection rate at source node, and actual acceptance rates at multicast

target nodes during NoC saturating condition by using the static tree-based multicast router (Ex-

pected injection rate is 0.25 flits/cycle).

respectively. The transient responses are measured until about the 213rd clock cycles. The

expected injection rate is 0.25 fpc, where with such expected data rate, the four selected

multicast communication partners in the NoC will be in saturating condition.

The saturating condition is generally due to the contentions between several multi-

cast messages in the intermediate nodes. In this situation, the actual measured accep-

tance rates at the six multicast destination nodes will be slower than the expected one.

Therefore, the actual measured injection rates at the source nodes will be automatically

reduced to a steady point following the actual measured data acceptance rates at the mul-

ticast destination nodes. As presented in the figures, the actual measured injection rate at

the source node and the actual acceptance rates at the destination nodes of each multicast

communication are reduced to a steady state point of about 0.125 fpc, which is lower than

the expected rate point (0.25 fpc).

As presented in Fig. 5.20, before the actual measured injection and acceptance rates

are steady to the stable point, the injection and acceptance rates change dynamically in

transient time. The dynamical responses in the transient time can be seen as the con-

tention behaviors of the traffic. As presented in Fig. 5.20(a), for example, a high overshot

is shown by the acceptance rate at the multicast target number 5 of the multicast Com-
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Fig. 5.21: Expected, actual injection rate at source node, and actual acceptance rates at multicast

target nodes during NoC non-saturating condition by using the static tree-based multicast router

(Expected injection rate is 0.125 flits/cycle).

munication 1 during about 6 cycle periods. The same overshot condition is shown by

the acceptance rate at the multicast target number 6 of the multicast Communication 4 as

shown in Fig. 5.20(d).

Fig. 5.21 present the other transient response measurements of the actual injection rate

at source node and actual acceptance rates at multicast target nodes for multicast com-

munication 1, 2, 3 and 4 by using tree-based static XY multicast routing. The expected

injection rate in this case is 0.125 fpc, where with such expected injection rate, the NoC

will be not saturated. In this situation accordingly, no contention occurs between the four

selected multicast communication partner groups, or the four selected multicast commu-

nication groups do not have contention with traffics of other multicast communication

groups, which are in saturating points. Therefore, the actual measured injection rates at

the source nodes can follow the actual measured data acceptance rates at the multicast

destination nodes. As presented in the figures, all actual injection and acceptances rates

at the six multicast destination nodes move to a steady state value of about 0.125 fpc,

which is similar to the expected data injection rate.

The comparison of the actual measured data injection rates between the multicast

router prototypes for four selected multicast communication groups is shown in Fig. 5.22.
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Fig. 5.22: Comparisons of the actual injection rates at source nodes for different routing algorithms

during NoC saturating condition (Expected injection rate is 0.25 flits/cycle).

The comparison is made for actual injection rate transient responses with an expected

data rate of 0.25 fpc. For themulticast communication 1 and 3 (Fig. 5.22(a) and Fig. 5.22(c)),

the actual injection rate of the planar adaptive multicast router can follow the expected

data rate. For the multicast communication 1 and 2 (Fig. 5.22(a) and Fig. 5.22(b)), the WF

multicast router version 1 (’wf-v1’) has the worst steady-state response. However, as pre-

sented in the Fig. 5.22(d), the WF multicast router version 1 shows the best performance,

because its steady state injection rate moves around the expected data rate.

5.7 Synthesis Results

The logic synthesis results of the four XHiNoC tree-based multicast router prototypes, i.e.

the static XY tree-based multicast router (xy), the minimal adaptive West-First tree-based

multicast router (wf-v1), the minimal adaptiveWest-First tree-based multicast router with

efficient spanning tree solution (wf-v2) and the minimal 2D planar adaptive tree-based

multicast router (plnr) are presented in Table 5.3. The logic synthesis of the multicast

routers is made by setting the target working frequency to 1 GHz. It appears that the area

overhead of the tree-based multicast router prototype with the planar adaptive routing
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Tab. 5.3: Synthesis results of the multicast routers using 130-nm CMOS technology library.

xy wf-v1 wf-v2 plnr

Target frequency 1 GHz 1 GHz 1 GHz 1 GHz

Total logic cell area 0.1089 mm2 0.1133 mm2 0.1168 mm2 0.1378 mm2

Est. net switch. power 14.652 mW 16.555 mW 17.149 mW 21.335 mW

Est. cell intern. power 40.330 mW 42.180 mW 43.999 mW 53.960 mW

Est. cell leakage power 21.60 µW 22.20 µW 23.50 µW 25.90 µW

Fig. 5.23: Circuit layout of the XHiNoC router with tree-based XY multicast routing using CMOS

standard-cell technology library.

algorithm is higher than the other multicast routers.

Fig. 5.23 shows the circuit layout (logic cell placement and wire routing) of the tree-

based multicast router with static XY routing algorithm. The circuit layout is made by us-

ing 180-nm CMOS standard-cell technology with block partitioning method. The compo-

nents for each port presented in the circuit layout floorplan are the FIFO queues/buffers

(Q), the multiplexor with ID management (MIM), the routing engine with single buffer

(RE) and the arbiter unit (A). Each component is placed in the circuit floorplan according

to the port location of the mesh-based router. We can see in the figure that the multiplexor

with IDmanagement (MIM) components dominate the total area of the router. The arbiter

(A) units occupy the smallest area of the overall circuit floorplan.
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5.8 Summary

This chapter has presented the XHiNoC router prototypes capable of routing unicast and

multicast messages using static or adaptive routing algorithms. The messages are routed

with the deadlock-free tree-based multicast method, where the routing engines used to

route the unicast and the multicast messages are the same, resulting in an efficient routing

algorithm gate-level implementation. A new theory for deadlock-free multicast routing

has also been introduced in this chapter. Formal definition and description for the VLSI

architecture and implementation of the deadlock-free tree-based multicast routers have

been given in this chapter.

The performance evaluation result under the random selectedmixed unicast-multicast

traffic has presented that the tree-based multicast router with planar adaptive routing al-

gorithm shows the best performance over the static tree-based multicast router and the

adaptive tree-basedmulticast routers with theminimalWest-First routing algorithm. Cer-

tainly there are still many traffic patterns that can be used to verify the latency, throughput

and communication energy (the number of the performed traffics in the network).

The tree-based multicast routing presented in this thesis is a class of distributed rout-

ing, in which routing decisions are made locally on every switch node based on the node

destination address in the multiple header probes of the message packets. Hence, the

technique to prevent inefficient spanning tree problem presented in this thesis will prob-

ably result in a suboptimal or near-optimal multicast spanning tree, or in certain cases, an

optimal spanning tree may be obtained. When the adaptive routing algorithms are used,

then the spanning tree formed independently at runtime by the header probes would

be probably different if the order of the header probes is different. When the static tree-

based multicast routing is used, then the formed multicast spanning tree will be the same

although the order of the header probes is changed.

A preprocessing algorithm before sending the multicast traffics to prepare a certain

order of the header flits that can perform optimal spanning tree in the network can be

further developed. However, this algorithm will lead to computational time and energy

overheads. Further investigation and analysis on the computational time overhead of the

preprocessing algorithm and its impacts on communication energy of the sub-tree in the

optimal performed spanning tree should be investigated. However, in some cases, the

gain of the communication energy efficiency due to the preprocessing algorithm may be

lower than its computational time and energy overhead.
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Adaptive routing selection strategies for awormhole switched network-on-chip (NoC)

based on bandwidth (BW) space occupancy, congestion information (FIFO buffer occu-

pancy), and contention information through the reservation numbers of communication

links are presented in this chapter. Motivations behind the implementations of adap-

tive routing algorithms in NoCs are described in Section 6.1. State-of-the-art of several

adaptive routing selection strategies is shown in Section 6.2. Basically, the BW-oriented

adaptive routing selection strategy can be combined with the other strategies such as

contention-based or queue-length-based strategy.

161
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Section 6.3 in particular will show a contention- and bandwidth-aware (CBWA) adap-

tive routing selection strategy that makes routing decisions by considering two infor-

mation between alternative output ports. The adaptive routing decisions are made at

runtime by considering the bandwidth spaces that have been reserved so far by other

messages/streams as well as the number of messages/streams that have currently ac-

quired the the alternative output ports. The number of messages acquiring the output

port is reflected by the number of local identity (ID) slots that has been reserved by mess-

sages routed through the output port. The routing engines in the NoC router read both

signals and route messages/streams into an output port having occupied less BW spaces

and ID slots. Micoarchitectures and routing function algorithms of the NoC routers with

different selection strategies are also presented in Section 6.3.

Experimental results under two selected traffic scenarios with different network sizes

are presented in Section 6.4. The experimental results will evaluate five NoC router pro-

totypes having different adaptive routing selection strategies, which have been explored

previously in Section 6.3. The synthesis results of the five adaptive NoC routers are pre-

sented in Section 6.5.

6.1 Motivation Behind Adaptive Routing Implementation

Network designers are motivated to design adaptive routing algorithms due to two main

objectives, i.e. to avoid entering hotspot links, and to avoid entering faulty network com-

ponents (faulty switch or link). The works in [172], [140] and [163] for instance, propose

fault-tolerance adaptive routing algorithms. Network faults can lead a regular network to

a non-regular network. The work in [135] presents a fault tolerance routing algorithm by

balancing traffics over network faults and non-regularity due to the network component

faults. The work in [194] presents a deadlock-free adaptive routing method to cover the

problem of oversized IP components placement in irregular mesh-based network.

The adaptive routing methods, which are aimed at increasing the degree of the mes-

sage routing adaptiveness in such a way that hotspot in the network can be reduced,

and network performance can be increased accordingly, have been presented in the lit-

erature. Based on routing locality, routing paths (routing decisions) can be made by in

source nodes by running a pre-processing algorithm to compute the set of routing paths

(source/centralized routing) ormade locally in every switch node (local/distributed rout-

ing). Based on routing setup time, routing algorithms can be set up at design-time or at

runtime. Most of routing implementations made at design time uses routing tables to

route messages (packets). The contents of the routing tables are programmed at design

time, and then adaptive routing paths are assigned in every routing table in the network

nodes by using some technique. The work in [178] for example, presents a design-time

routing method called “Application-Specific Routing Algorithm” (APSRA) used to in-

crease the degree of routing adaptivity for hotspot avoidance. The “Segment-based Rout-
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Fig. 6.1: Problem in the unpredictable two-hop neighbor-on-path congestion measurement.

ing” (SR) presented in [153] can be classified also into an adaptive routing implementation

at design-time, in which the network is segmented into some subnets and restrictions are

applied to avoid deadlock configurations. The dynamic routing protocol in [144] for bal-

ancing distribution of traffics in NoCs can also be classified into the design-time routing

approach.

In look-up-table-based routing algorithms, the size of the tables will increase as the

network size increases, since all entries must be added in the tables. Some works then

propose different techniques to reduce the size of the routing tables. The work in [154]

presents a region-based routing algorithm aimed at reducing the size of routing tables for

NoCs by grouping destination network into network regions. The work in [118] shows a

simple data transfer technique by applying local addresses (labels), which are computed

off-line for each traffic in an application (source (design-time) routing approach). With the

same backgroundmentioned in [118], where traffics in embeddedMPSoC are predictable,

our proposed methodology can also be implicitly viewed as a technique to reduce the

number of entries in the routing tables based on runtime variable (dynamic) local message

identity (ID) technique that will be explained later. In our experiments, (see Section 6.4.2

for example), all considered traffics can still be routed under several scenarios, although

the number of available ID slots per link is set less than the number of node entries in

the NoC. Our methodology can be classified into runtime distributed routing approach,

where the routing is made locally in every NoC router at runtime during application

execution time.

6.2 State-of-the-Art in Adaptive Routing Strategy

6.2.1 Selection based on FIFO Queue Occupancy

A commonly used adaptive routing policy is based on buffer occupancy, where the “con-

gestion information” (CI) of a set of possible admissible output ports connected to the

downstream (next-hop) routers are traced back to upstream routers. The CI information
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can be the length of data queues in the FIFO buffer that can be indicated by multiple-bit

signal, or the buffer status (free or busy) that can be indicated by single-bit signal. These

CI signal will be used by a packet on a current router to select one best routing direc-

tion between alternative downstream outgoing link at any instant time. A “stress value”,

which indicates how many packets coming into the downstream outgoing links at a unit

time [217], can also be used as an alternative consideration for packet-switched routers

to make routing decisions. Many works have used this queue-length-oriented adaptive

routing selection such as in [134], [168] [100] and [217].

A specific technique to drain messages from hotspot areas called “Contention-Aware

Input Selection” (CAIS) is presented in [213]. Rather than adaptively selecting less con-

gested outgoing downstream direction, the CAIS method focuses on selection of input

ports in the upstream (backtrace) direction. When two or more input ports request the

same output port, an arbiter unit at the output port will select an input port having more

waiting packets in its upstream direction. It looks that adaptive routing path selection is

made by the arbitration unit rather than by the routing engine unit.

Because the FIFO buffers are implemented at input or output or both at input and

output ports of every router node, then this strategy can be divided into a single hop or

multi-hop congestion-aware adaptive routing strategies. The work in [14] has presented

an interesting method to make adaptive routing selection based on the number of free

buffer slots and availability of buffer in the two-hop adjacent neighbors “Neighbor-on-

Path Routing Selection Strategy”. However, the main critic to apply such methodology is

the problem of unpredictable traffic situation as shown in Fig. 6.1(a).

Packet A will be routed from node (1,1) to (3,3). By measuring two-hop neighbor

congestion information, the packet A at node (1,1) can overview four alternative paths,

i.e. node-to-node paths (1, 1)− (1, 2)− (1, 3), (1, 1)− (1, 2)− (2, 2), (1, 1)− (2, 1)− (3, 1) and

(1, 1)−(2, 1)−(2, 2). However, packet headerA has only two alternative output selection,

i.e. to North or East output port as depicted in Snapshot 1 of the figure. All four adjacent

neighbors send back congestion information, i.e. the length of data queues in the FIFO

buffers and the buffer status (“free” or “busy”). At the same time packet headers B and C

come to node (2,1) via Local and East input port, respectively, in which packet A certainly

does not know such situation. In this case, packet A will not use (1, 1)−(1, 2)−(1, 3) path.

As shown in Snapshot 2, we assume that the routing engine finally decides to route packet

header A to East output port, and at the same time at node (2,1), packet headers B and C

are routed to West and North, respectively. Now, an unexpected situation occurs, where

packet A has selected a non optimal path because of the unpredictable traffic situation.

The same successive situations is shown in Fig. 6.1(b), when the packetAwould be routed

to the North output port.
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Fig. 6.2: A Situation of 2-hop and 3-hop congestion information (CI) traceback and actual link

bandwidth consumption.

6.2.2 Selection based on Bandwidth-Space Occupancy

Another approach tomake an adaptive routing decision is a strategy based on bandwidth-

space occupancy. Fig. 6.2 shows us a snapshot of a network situation of the difference

in orientations between the adaptive routing strategies based on FIFO queue occupancy

(FQO) or also known as Congestion-Aware Adaptive Routing Selection Strategy and band-

width space occupancy which is also known as Bandwidth-Aware (BWA) Adaptive Routing

Selection Strategy. Fig. 6.2(a) presents a snapshot of the network situation where the FQO

strategy reads congestion information (CI) traceback from 2-hop possible downstream

neighbor routers. While Fig. 6.2(b) presents a snapshot of the network situation where

the FQO strategy reads congestion information (CI) traceback from 3-hop possible down-

stream neighbor routers.

In Fig. 6.2, packetA coming toWest input port at node (1,2) will be routed to node (3,1).

We can see that packet A has 3 alternative paths to attain node (3,1), i.e. node-to-node

paths (1, 2)−(2, 2)−(3, 2)−(3, 1), (1, 2)−(2, 2)−(2, 1)−(3, 1) and (1, 2)−(1, 1)−(2, 1)−(3, 1).

The header of the packet A (flit A1) has alternative output ports at the instant time, i.e.
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Fig. 6.3: Another Situation of 2-hop and 3-hop congestion information (CI) traceback and actual

link bandwidth consumption.

East and South. While the header flit of packet A is coming to node (1,2), at the same

router node, the payload flit of packetB is coming fromNorth input port and the payload

flit of packetC is coming from South input port. They have acquired in advance the South

and East output ports and have reserved 50% and 100% of the maximumBW space (Bmax)

of the output ports, respectively.

As presented in Fig. 6.2(a), the 2-hop congestion-information (CI) signals are sent back

to node (1,2). If the packet A reads the 2-hop CI signals and buffer availability (like the

strategy used in [14]), then packet A will select South output port as the best output path,

because the South output port presents the CI signal value of 1 and the East output port

presents the CI signal value of 1 and 2 for two consecutive paths, i.e. the formed paths

when the packet A would be routed to the East port. But if only 1-hop CI signals are

considered (not presented in the figure), then there is no different hotspot situation based

on the view of the packet A, because both East and South neighbor send back the same

queue-length (data queue occupancy), i.e. 1 data queue.

The situation presented in Fig. 6.2 is actually the main functionality of using the N-
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hop neighbor congestion information without considering its drawback mentioned in

Section 6.2.1. However, if the packet A just reads the actually bandwidth (BW) space

occupancy of the two alternative output port at the current node (1,2), then packet A can

view the different hotspot situation. Hence, packet A will also be routed to South output

port when using the BWA strategy because it has more free BW spaces.

The 3-hop CI traceback is presented in Fig. 6.2(b). When the header flit of packet A

reads the 3-hop CI signals from the South and East output port at the instant time of the

network situation, then both alternative output ports give an equal CI signal value of 2

as presented in the figure. In this case, the header surely cannot make the best selection.

However, by using the BWA adaptive routing selection strategy, the header flit of the

packet A will select South output port because the South output port provides still 50%

BW space compared to the BW space of the East output port that has been consumed

100% by the packet B.

Another situation is presented in Fig. 6.3. The paths and participating packets in the

figure is similar to Fig. 6.2 but with different BW space occupancy. In the Fig. 6.3, we

can see that packet B consumes 10% Bmax of its acquired links, while packet C consumes

25% Bmax of its acquired links. By reading the CI signals of the 2-hop and 3-hop adjacent

neighbors, packet A indicates that East output port is the best output port, because both

2-hop and 3-hop CI signals from the downstream routers that are sent back to the East

output port have a zero value (no data occupies the buffer). The 2-hop and the 3-hop

neighbor CI signals that are sent back to South output port are 1 data queue-length as

presented in Fig. 6.3(a) and Fig. 6.3(b) respectively. However, if we use BWA adaptive

routing strategy, then packet A will be routed to South output port because it has less BW

space occupancy (10%) compared to East output port in which its maximum BW capacity

has been consumed by 25% of packet B.

The work in [179] presents bandwidth-aware adaptive routing method. However, this

method computes adaptive routing paths off-line (at design time). A runtime bandwidth-

aware adaptive routing function called AdNoC is presented in [6]. The proposed method

selects an output port having more free bandwidth spaces. The bandwidth-aware adap-

tive routing selection of the XHiNoC has the same strategy as AdNoC’s strategy. How-

ever, AdNoC uses virtual channel buffers leading to extra large area overhead, while

XHiNoC do not use them. The “bandwidth/contention/congestion look-ahead” method

used in XHiNoC can compute immediately a routing decision in one cycle period. Mean-

while, the AdNoC implementation result requires 4 cycle periods to make routing de-

cision leading to routing computation time overhead. Moreover, the XHiNoC can also

implement many strategies or the combination of the strategies.
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Fig. 6.4: Alternative information that can be used to make adaptive output routing selection.

6.3 Architectures andAlgorithms forAdaptiveRouting Se-

lection Functions

6.3.1 Local ID-based Data Multiplexing

We use a wormhole switching technique, where flits of different messages can be inter-

leaved, and share the same communication media based on the locally organizedmessage

identity. Flits belonging to the samemessage will always have the same local ID-tag when

acquiring a communication medium (network link). The wormhole messages can be in-

terleaved at flit-level because every flit has a unique local ID-tag to differentiate it from

other flits belonging to different flits in the same link. The local ID tag of a message is up-

dated by an ID management unit implemented at output port, when the message enters

a new communication channel. By using this kind of wormhole switching, the head-of-

line blocking problem commonly happen in the traditional wormhole switching can be

solved without implementing virtual channels. The concept of the wormhole switching

has been depicted in Fig. 4.3 in Chap. 4, where different messages can be interleaved in

the same buffer pool or can virtually cut-through at flit level. Each message reserves one

ID slot in order to be able to use the link. Based on such situation, contention information

in the output port can be achieved by counting the number of the reserved ID slots in

the link. Moreover, if the ID slot reservation is followed by bandwidth reservation, then

a bandwidth-aware adaptive routing selection strategy can be also implemented in our

NoC.

6.3.2 Adaptive Routing Selection Functions

Five router implementations based on information that are considered to make routing

decision and based on the viewpoint of our NoCmicroarchitecture will be presented. The

three considered information are described in the following.
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Alg. 15 CBWA Adaptive Routing Function–BW-ID version (Abstract view)
1: Begin Function Select(port m1, port m2)

2: if Routing can be made to port m1 and port m2 then

3: if the used BW space in port m1 is less than the used BW space in port m2 then

4: Return Routing = port m1

5: else if the used BW space in port m1 is greather than the used BW space in port m2 then

6: Return Routing = port m2

7: else if the used BW space in port m1 is the same as the used BW space in port m2 then

8: if the used ID slots in port m1 is less than or equal to the used ID slots in port m2 then

9: Return Routing = port m1

10: else

11: Return Routing = port m2

12: end if

13: end if

14: end if

15: End Function

• Identity (ID) slot occupancy (the number of free ID slots). This information can be

called as Contention Information of an output port, i.e. the number of messages that

have contented (competed) so far to access the output port. Since our router can

interleave different wormhole messages at flit-level in the same link without using

virtual channels, then the number of reserved ID slots will represent the number of

the wormhole messages that have been mixed in the outgoing link.

• Bandwidth (BW) space occupancy (the number of free BW space). This information

can be called as BW-Reservation Information of an output port, i.e. the number of BW

spaces that have been reserved by messages to access the output port.

• Buffer space occupancy (the number of data queue in a FIFO buffer). This information

can be called as Congestion Information of an output port, i.e. the queue-length in the

FIFO buffer at the input port of the next neighbor switch connected directly to the

output port.

Fig. 6.4(a) shows how the routing engine (RE) unit at the West input port of router

node (3, 3) receives congestion information in term of Queue-Length in the FIFO buffers

at the input ports of the neighbor nodes (3, 4) (North 1), (4, 3) (East) and (3, 2) (South 1).

The North 1 (N1), East (E) and South 1 (S1) are alternative output ports to route messages

adaptively from the West (W) input port. Fig. 6.4(b) shows the same situation, but in this

case, the number of reserved bandwidth (usedBW) or reserved ID slots (usedID) at the al-

ternative output ports are sent to the RE unit. It appears that information from neighbors

are required when the queue-length-oriented selection function is implemented. Mean-

while, the contention-oriented and bandwidth-oriented selection strategies need only lo-

cal information from each considered router like general off-chip routers. By using the

three considered information explained above or combination of them, then five NoC

router prototypes (version) are proposed as mentioned in the following.
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• BW-ID version. This prototype uses two information signals to make routing deci-

sions. The first prioritized signal is the number of the reserved bandwidth spaces.

Messages are routed to an output direction having less reserved bandwidth spaces.

If the numbers of the reserved bandwidth spaces between two output ports are

equal, then the second prioritized signal is used, i.e. the number of reserved ID

slots. The messages are then routed to an output direction having less reserved ID

slots when the numbers of the reserved bandwidth spaces between the alternative

output ports are equal. This adaptive routing strategy can be called as Contention-

and Bandwidth-Aware (CBWA) Adaptive Routing Selection Strategy.

• FQ-ID version. This prototype also uses two information signals to make routing

decisions. The first prioritized signal is the number of used buffer spaces. Messages

are routed to an output direction having less utilized buffer spaces. If the number

of the used buffer spaces between two output ports are equal, then the second pri-

oritized signal (the number of reserved ID slots) is used. The messages are then

routed to an output direction having less reserved ID slots when the numbers of

FIFO queue occupancies between the alternative output ports are the same. This

adaptive routing strategy can be called as Contention- and Congestion-Aware (CCA)

Adaptive Routing Selection Strategy.

• BW version. This prototype uses single information signals to make routing deci-

sions. Messages are routed to an output direction having less reserved bandwidth

spaces. This adaptive routing strategy can be called as Bandwidth-Aware (BWA)

Adaptive Routing Selection Strategy.

• FQ version. This prototype uses single information signals to make routing deci-

sions. Messages are routed to an output direction having used less FIFO buffer

spaces. This adaptive routing strategy can be called as Congestion-Aware Adaptive

Routing Selection Strategy.

• ID version. This prototype uses single information signals to make routing decisions.

Messages are routed to an output direction having used less ID slots. This adaptive

routing strategy can be called asContention-Aware Adaptive Routing Selection Strategy.

The abstract view of the BW-ID version or the CBWA adaptive routing selection func-

tion is presented in Alg. 15. In the algorithm, the function will firstly consider and select

an output port having more free-available BW spaces. When the free BW spaces be-

tween two alternative output ports are equal, then the function will consider and select

an output port having more free-available ID slots. When both considered information

are equal, then as shown in Alg. 15, the router will select output port m1.

The logical view of the BW-ID version or the CBWA adaptive routing selection strat-

egy is shown in Alg. 16. The logical equations are derived from the abstract view of the

routing selection function described in Alg. 15, where the BW space occupancy is the first
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Alg. 16 CBWA Adaptive Routing Function–BW-ID version (Logical view)

usedBW (m) : Number of used/reserved Bandwidth space in direction m

usedID(m) : Number of used/reserved ID slots in direction m

1: Begin Function Select(m1, m2)

2: if usedBW (m1) & usedID(m1) ≤ usedBW (m2) & usedID(m2) then

3: Return m1

4: else if usedBW (m1) & usedID(m1) > usedBW (m2) & usedID(m2) then

5: Return m2

6: end if

7: End Function

priority signal and the ID slot occupancy is the second priority signal. The concatenated

usedBW & usedID signal of the BW space occupancy (usedBW ) and the ID slot occu-

pancy (usedID) as presented in the Alg. 16 will represent the level of signal priority. In

digital signals, the usedBW and the usedID are represented in binary codes. Hence, by

locating the usedBW signal in the left side, then it will be directly allocated in the most

significant bit (MSB) of the concatenated signal. While the usedID put in the right side

will be the least significant bit (LSB) of the concatenated signal. The usedBW signal is

allocated in the MSBs of the concatenated signal, because during runtime selection, the

BW space occupancy has higher priority than the ID slot occupancy, which is represented

by the usedID signal.

The logical view of the CCA (Contention- and Congestion-Aware) adaptive routing

selection function is shown in Alg. 17. Like the CBWA selection function, the CCA rout-

ing function considers two information, i.e. the queue-length in FIFO buffer in the next

neighbor of two alternative outgoing links and the number of reserved ID slots in the two

alternative output ports.

Alg. 17 CCA Adaptive Routing Function–FQ-ID version (Logical view)

QueueLength(m) : Number of data in FIFO buffer of neighbor in direction m

usedID(m) : Number of used/reserved ID slots in direction m

1: Begin Function Select(m1, m2)

2: if QueueLength(m1) & usedID(m1) ≤ QueueLength(m2) & usedID(m2) then

3: Return m1

4: else if QueueLength(m1) & usedID(m1) > QueueLength(m2) & usedID(m2) then

5: Return m2

6: end if

7: End Function

The logical view of the BW version or the BWA adaptive routing selection strategy

is shown in Alg. 18. The BW version adaptive routing selection function is simpler than

the BW-ID version because the usedID signals from both alternative output ports are re-

moved from the selection mechanism. Alg. 19 and Alg. 20 present the logical view of the

congestion-aware and the contention-aware adaptive routing selection function, respec-

tively.
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Alg. 18 Bandwidth-Aware Adaptive Routing Function (Logical view)

usedBW (m) : Number of used/reserved Bandwidth space in direction m

1: Begin Function Select(m1, m2)

2: if usedBW (m1) ≤ usedBW (m2) then

3: Return m1

4: else if usedBW (m1) > usedBW (m2) then

5: Return m2

6: end if

7: End Function

Alg. 19 Congestion-Aware Adaptive Routing Function (Logical view)

QueueLength(m) : Number of data in FIFO buffer of neighbor in direction m

1: Begin Function Select(m1, m2)

2: if QueueLength(m1) ≤ QueueLength(m2) then

3: Return m1

4: else if QueueLength(m1) > QueueLength(m2) then

5: Return m2

6: end if

7: End Function

6.3.3 Router Microarchitecture and Packet Format

The microarchitecture of the NoC router using the contention- and BW-aware (CBWA)

adaptive routing selection strategy is presented in Fig. 6.5(a). The router is designed

based on 2Dmesh-planar topology, where each router has seven IO port, i.e. East, North1,

North2, West, South1 and South2 ports. Crossbar interconnect is customized to optimize

the logic area of the router based on the allowed turns in the 2D planar adaptive routing

algorithm. The rest router internal IO connections representing the prohibited turns are

removed from the architecture. Fig. 6.5(b) shows the NoC router that uses the contention-

and congestion-aware (CCA) adaptive routing function. We can see that we need a little

bit of effort to reconfigure the microarchitecture of the XHiNoC at design time from BW-

ID to FQ-ID version. The required modifications are (1) add new output and input ports

for the QueueLength signal from the FIFO buffer, (2) replace the RSM with a new RSM,

and (3) remove the BW accumulator unit.

For the sake of simplicity, only the router components in East input port and in West

output port are depicted. Two main components in the input port are FIFO queue and

Routing Engine with Data Buffering (REB). In the REB unit, the combination of the rout-

ing state machine (RSM) and routing reservation table (RRT) is implemented to support

runtime adaptive routing mechanism.

The detail packet format and the control bits used in the XHiNoC architecture for the

CBWA and BWA adaptive router is presented in Fig. 6.6. The message is split into several

flits and has 39-bit width, 32 bits for dataword plus 9 extra bits i.e., 3-bit field to define the

type of flits and 4-bit field to determine the local identity label or ID-tag of a message. An

extra 12-bit field in the header and tail flits is used to present the expected communication
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Alg. 20 Contention-Aware Adaptive Routing Function (Logical view)

usedID(m) : Number of used/reserved ID slots in direction m

1: Begin Function Select(m1, m2)

2: if usedID(m1) ≤ usedID(m2) then

3: Return m1

4: else if usedID(m1) > usedID(m2) then

5: Return m2

6: end if

7: End Function
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Fig. 6.5: Switch microarchitectures for routers with contention- and bandwidth-aware and with

congestion- and contention-aware adaptive routing selection strategy.
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Fig. 6.7: ID-based routing table reservation and assignment.

bandwidth. When a header flit of a message flows through the crossbar multiplexor at

an output port, the value in this field will be used to reserve BW for the message on the

output port.

The width of the required Bandwidth (ReqBW ) field determines the resolution of the

BW space in each outgoing port. For q-bit field of the ReqBW , the resolution of BW space

is 2q. Hence, when q = 12 as set in the Fig. 6.6, then the number of BW variations that

can be used by the messages to reserve BW space at the output port is 212 = 4096. When

we use Mega-Byte per second (MB/s) as the unit of the required BW and the maximum

capacity of the link were for instance 4096 MB/s, then if the required BW is 80 MB/s for

example, then the binary signal of the ReqBW will be [000001010000].

Fig. 6.7(a) shows us in detail how a header flit of a packet reserves a routing slot in

the RRT unit at the West input port. The header with ID-tag 3 comes into West input

port. The REB unit routes and buffers the header flit in its data register. The RSM unit

computes the requested routing direction based on target address written in the header

bit fields. The RSM unit selects one of the two alternative output ports based on two

signals representing the number of used ID slots (usedID) and used BW spaces (usedBW )

in the two alternative output port. Both signals are concatenated (usedBW&usedID) by

the RSM unit. The output port having less concatenated signal will be selected as the

best output direction. The output routing made by the RSM unit is then stored in the slot

number 3 of the RRT unit (in accordance with the ID-tag of the header flit). The routing
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Fig. 6.8: Local ID slot reservation.

output decision is controlled by the type field of a flit via a two input multiplexor. If the

flit type is a header, then routing decision is read from the RSM unit.

When a databody flit belonging to the same message flows through the REB com-

ponent as presented in Fig. 6.7(b), the routing direction will be indexed by the databody

flit using its ID-tag. The routing direction is thus read directly from the RRT. The header

with ID-tag 3 belongs to the same message with the databody with ID-tag 3. Since they

have the same ID-tag number. When a tail flit flows through the REB component, then

the same mechanism takes place like the index operation made by the databody flit, but

at the same cycle, the routing direction is removed from the RRT.

In the output port, there are two main components, i.e. an arbiter unit and a crossbar

multiplexor with ID management unit (MIM). The ID management unit (IDM) consists

of an ID slot table, bandwidth (BW) accumulator and ID accumulator units. Fig. 6.8(a)

shows how the IDM unit works to allocate a header flit into a new local ID slot as its

new ID tag. The ID tag of the header flit is 0 and required to perform a communication

rate of 80 MB/s. Firstly, when a header flit type is detected, a free ID slot is looked for.

As shown in the Fig. 6.8(a), it looks that new ID slot (IDN) 3 is found free, and then it is

used as the new ID tag for the header flit. At the same cycle, the previous ID tag of the

header and from which port the header flit comes is written in the slot number 3. The

select signal set by the arbiter unit will inform from which port the header flit comes. The

BW accumulator unit adds the required BW of the header to the total BW spaces that has

been reserved so far. Meanwhile the ID accumulator unit increments also the reserved ID

slot from 2 to 3 (usedID ⇐ usedID + 1).

When a databody flit (ID-tag 0) belonging to the same message with the previously

header flows through the MIM component as presented in Fig. 6.8(b), the IDM unit will

check the current ID-tag of the databody flit and from which port it comes. As shown

in the Fig. 6.8(b), the pair of both signals (ID-tag 0, from L port) is detected in the ID

slot number 3, then the databody flit will also have ID-tag number 3, which is the same
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Fig. 6.9: Average and actual bandwidth measurement per target node under transpose scenario in

4 × 4 mesh network.

as the previously header shown in Fig. 6.8(a). When a tail flit flows through the MIM

component, then the same mechanism takes place like the index operation made by the

databody flit, but at the same cycle, the signal pair will be removed from the ID slot table.

6.4 Experimental Results

In this section, the five NoCprototypes with different adaptive routing selection strategies

are simulated. The adaptive routing for the five prototypes are minimal. It means that

messages will not be routed away from their destination node. Thus, the message will

have a maximum of two alternative routing direction on intermediate nodes.

Two simulation scenarios are made to verify the effectiveness of the bandwidth-aware

adaptive routing algorithm. The first simulation is made under transpose traffic scenario

in the 2D 4× 4 mesh NoC, and the second simulation is run under bit complement traffic

scenario in the 2D 8×8 meshNoC. The experimental results are presented in the following

subsections.

6.4.1 Transpose Scenario in 4x4 Mesh Network

The average bandwidth measurement under transpose scenario in 4x4 mesh network is

presented in Fig. 6.9(a). The average bandwidth is measured for different workload sizes.

It looks that the average bandwidth is constant, and the BW-ID, BW and ID prototypes

give better performance than the FQ-ID and FQ. The injection rates of producer nodes in

the transpose scenario are set randomly. The initial injection time on every data producer

node is also set randomly. Fig. 6.9(b) presents the actual bandwidth measurement per

target node under transpose scenario in 4x4 mesh network. The expected bandwidth de-

picted in Fig. 6.9(b) represents the set injection rates of the producer nodes. For example,

messages injected from node 4 and node 13 are expected to communicate with maximum
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Fig. 6.10: The tail flit acceptance measurement on every target node in clock cycle period under

transpose scenario in 4 × 4 mesh network.
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Fig. 6.11: Average tail flit acceptance latency under transpose scenario in 4 × 4 mesh NoC.

bandwidth rate of about 2000 MB/s.

Fig. 6.10 shows the tail flit acceptance measurement in clock cycle under transpose

scenario in 4 × 4 mesh network. The tail flit acceptance or the 500th flit is presented

in Fig. 6.10(a) and the tail flit acceptance or the 10000th flit is presented in Fig. 6.10(b).

Node 1, node 6, node 11 and node 16 present zero acceptance latency because these nodes

do not send and accept messages. The average tail flit acceptance latency under transpose

scenario in 4x4 mesh NoC for different workload sizes is shown in Fig. 6.11(a). The en-

larged view of the average tail flit acceptance latency to ilustrate clearly the difference

between the adaptive router prototypes is presented in Fig. 6.11(b).

The bandwidth space and ID slots reservation for every output port of all network

nodes are presented in Fig. 6.12 and Fig. 6.13, respectively. It looks that there is no band-

width space and ID slots reservation at North 1 and South 2 output ports of all network

nodes. The distribution of the bandwidth reservation and ID slots reservation are variant

in the transpose traffic scenario for all adaptive router prototypes.

Meanwhile, Fig. 6.14 exhibits the occupancy of four selected FIFO buffers at input
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Fig. 6.12: Bandwidth space reservation at each output port under transpose scenario in 4×4 mesh

NoC.
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Fig. 6.13: ID slots reservation at each output port using transpose scenario in 4 × 4 mesh NoC.
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Fig. 6.14: FIFO Queue occupancy at selected output ports and network nodes for transpose sce-

nario in 4x4 mesh NoC.

ports. The measurement of the number of data in the FIFO queues is made in every clock

cycle period, i.e from initial time of the simulation until the 30th cycle period. The four

figures of the selected FIFO buffers show that there are several situation at any clock cycle

periods where the FIFO buffers are emptied from data. This case will be more frequent

when the injection rates of the messages are slower. Therefore, in line with the previ-

ous explanations in Section 6.2, the FQ-ID and ID prototypes could probably make a less

optimal routing direction because of such situation compared with the bandwidth-aware

adaptive routing algorithms (BW-ID and BW), which consider directly the available band-

width spaces on the alternative outgoing ports.

Different initial injection times could give different performance evaluation results

because correct decisions to make an optimal routing direction are strongly dependent

on the dynamic neighbor states of the FIFO buffer occupancy, bandwidth space and ID

slots reservation of the link at certain instant time as explained in Section 6.2. The exper-

imental result presented in this subsection is only one of many simulations that could be

run to test the performance of the five selected adaptive router prototypes. The follow-

ing subsection will describe another simulation result in a larger network size with bit

complement data distribution scenario.
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Fig. 6.15: Average bandwidthmeasurement and tail acceptance delay for bit-complement scenario

in 8 × 8 mesh network.
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Fig. 6.16: Actual bandwidth measurement per network node for bit complement scenario in 8× 8

mesh network.

6.4.2 Bit Complement Scenario in 8x8 Mesh Network

This subsection presents the performance evaluations of the five adaptive NoC router

prototypes under bit complement traffic scenario in the 2D 8×8 mesh network. The injec-

tion rates of producer nodes in the bit complement scenario are set randomly. Fig. 6.15(a)

shows the average bandwidth measurement in MB/s of all communication pairs in the

bit-complement traffic scenario. Fig. 6.15(b) presents the average tail acceptance delay

in clock cycle period. In both simulations, the measurements are made by varying the

number of workloads per data producer node, i.e. the number of flits sent to the NoC.

The workloads is varied between 500, 1000, 2000, 3000, 4000 and 5000 flits per data pro-

ducer node. It looks like the BW-ID and BWNoC prototypes present the best performance

followed by the ID, FQ-ID and FQNoC prototypes.

The actual bandwidth measurement for every node-to-node communication pair (per

network node) in MB/s for bit complement scenario in the 8 × 8 mesh network is pre-

sented in Fig. 6.16. The actual bandwidth measurements are made at destination nodes.
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Fig. 6.17: Distribution of the total bandwidth reservation on every network node for bit-

complement scenario in 8 × 8 mesh NoC.
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Fig. 6.16(a) shows the measurement for node 1–32, while Fig. 6.16(b) exhibits the actual

bandwidth measurement for node 33–64. Some data producer nodes inject data with high

expected communication rate. Therefore, some communication pairs cannot meet the ex-

pected data communication bandwidth because the contention of the high-throughput

rate traffics to acquire the same outgoing link leads to a performance bottleneck situa-

tion. Only a few communication pairs can meet the expected communication bandwidth.

Fig. 6.17 presents the 3D surface of the distribution of the total bandwidth reserva-

tion on every network node (router) for the five adaptive NoCs under bit-complement

scenario in 8 × 8 mesh NoC. Fig. 6.17(a) for example shows the comparison of the total

bandwidth reservation between NoC router prototypes with BW-ID and FQ-ID selection

parameters. In the Fig. 6.17(b), we can see that the bandwidth space occupancy between

the BW-ID and BW methods are the same. In general, the proposed bandwidth-aware

adaptive routing selection strategy with different selection parameters tends to move the

traffic in the network center nodes. Thus, the bandwidth occupancy is concentrated in

the network center.

Fig. 6.18 presents the transient responses of the actual injection and acceptance rates of

4 selected communication pairs for bit-complement traffic scenario using BW-IDmethod.

The transient measurements in both figures are made from initial simulation time un-

til the 173th clock cycle period. As presented in Fig. 6.18(b), the acceptance rate of the

Comm. 2 experiences some overshots at several clock cycle period and swings around

the expected communication rate, while the injection rate can follow the expected com-

munication rate. Meanwhile, the actual measured injection and acceptance rates of the

Comm. 1, Comm. 3 and Comm. 4 are lower than the expected rate and fluctuate around

at certain steady state points.

Fig. 6.19 presents the transient responses of the actual injection and acceptance rates of

4 selected communication pairs for bit-complement traffic scenario using FQ-ID method.

As presented in Fig. 6.19(a), the acceptance rate of the Comm. 1 experiences overshots

two times during a few clock cycle periods. The injection rate can follow the expected

communication rate only in some short periods of clock cycle. Afterwards, the actual

injection rates swings dynamically around a certain steady state point above the expected

data rate.

6.5 Synthesis Results

The synthesis results of the five adaptive NoC routers with different routing selection

function are presented in Table 6.1. The NoC routers are synthesized using 130-nmCMOS

standard-cell library from Faraday Technology underDesign Vision tool from Synopsys. The

target data frequency for the five adaptive NoC router prototypes is 1 GHz. The table

presents the total logic cell area, estimated dynamic power (net switching and cell internal

power) and static leakage power of the NoC routers. We can see in the table that the BW-
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Fig. 6.18: Transient responses of the actual injection and acceptance rates of 4 selected communi-

cation pairs for bit-complement traffic scenario using BW-ID method.

ID version of the BWA adaptive routers consumes more logic cells and more powers than

the other prototypes.

In Table 6.1, we can also see that the BW-version of the BWA adaptive router has larger

logic cell area than the FQ-version. The area overhead is due to the area overhead of the

bandwidth accumulator unit that is integrated in each crossbar multiplexor component

of the router together with the ID Management unit. As presented in the table, the ID-

version of the adaptive NoC router has the least logic cell area compared to the other

adaptive NoC prototypes.

6.6 Summary

The contention- and bandwidth-aware (CBWA) adaptive NoC routers, which select the

best outgoing port at runtime based on the bandwidth occupancy and the number of

the free ID reservable ID slots were presented in this chapter. The orientation of the

routing engine components of the NoC router to the number of free bandwidth spaces

at alternative outgoing ports is aimed at avoiding congestion situations, in which the

bandwidth capacity of communication channels is overloaded. In any case, the BWA
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Fig. 6.19: Transient responses of the actual injection and acceptance rates of 4 selected communi-

cation pairs for bit-complement traffic scenario using FQ-ID method.

adaptive routing selection strategy will help to balance the bandwidth utilization of the

total NoC bandwidth capacity provided by the overall communication channels.

The implementation of the BWA adaptive routing selection strategy is reasonable in

heterogeneous NoC-based multiprocessor systems especially in embedded MPSoCs run-

ning a parallel task application, where several processing element cores may inject data

to the NoC with different injection rates. The differences of the data injection rates be-

tween the cores are due to the application requirements, or due to hardware/software

constraints and the complexity of the task executed in a certain node of the NoC. In mul-

timedia applications, some audio/video streaming’s request require different end-to-end

data rates to meet the constraints of the proper application execution and scheduling.

Therefore, constant bandwidth rates, which may be different for each data streammust be

guaranteed. The hardware/software constraints is limited for example by the maximum

data frequency of the ASIC/FPGA cores as hardware parts and the working frequency of

the CPU cores as software parts, which run the executable code of a software/computer

program.

As exhibited in the simulation results of the limited number of the selected traffic

scenarios, the performances of the bandwidth-aware (BWA) adaptive routing and the

contention- and bandwidth-aware (CBWA) adaptive routing selection strategy are almost
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Tab. 6.1: Synthesis results of the adaptive routers using 130-nm CMOS technology library.

BW-ID FQ-ID BW FQ ID

Target frequency 1 GHz 1 GHz 1 GHz 1 GHz 1 GHz

Total logic cell area 0.1504 mm2 0.1322 mm2 0.1436 mm2 0.1304 mm2 0.1300 mm2

Est. net switch. power 22.238 mW 21.926 mW 21.989 mW 22.024 mW 21.134 mW

Est. cell intern. power 57.081 mW 55.145 mW 56.627 mW 55.216 mW 54.441 mW

Est. cell leakage power 29.50 µW 24.30 µW 27.10 µW 24.20 µW 24.30 µW

similar, and show better performance compared to the congestion-aware, contention-

aware and contention- and congestion-aware (CCA) adaptive routing selection strategy.

However, since the CBWA adaptive routing method considers not only the bandwidth

space occupancy but also the number of messages contenting to acquires the alternative

output ports, then the CBWA adaptive routing method theoretically would make efforts

to balance the distribution of traffics on the NoC links.



Chapter 7

Connection-Oriented

Guaranteed-Bandwidth for Quality of

Service

Contents

7.1 State-of-the-art in Data Multiplexing Techniques For NoCs . . . . . . . . 188

7.1.1 NoCs with TDMA Technique . . . . . . . . . . . . . . . . . . . . . . 188

7.1.2 NoCs with SDMA Technique . . . . . . . . . . . . . . . . . . . . . . 188

7.1.3 NoCs with CDMA Technique . . . . . . . . . . . . . . . . . . . . . . 189

7.1.4 NoCs with IDMA Technique . . . . . . . . . . . . . . . . . . . . . . 189

7.1.5 Comparisons of the SVC Configuration Methods . . . . . . . . . . 191

7.2 Connection-Oriented Communication Protocol . . . . . . . . . . . . . . . 195

7.2.1 Runtime Local ID Slot and Bandwidth Reservation . . . . . . . . . 196

7.2.2 ID-based Routing Mechanism with Bandwidth Reservation . . . . 197

7.2.3 Experiment on Radio System with Multicast Traffics . . . . . . . . . 199

7.3 Combined Best-Effort and Guaranteed-Throughput Services . . . . . . . 203

7.3.1 Microarchitecture for Combined GT-BE Services . . . . . . . . . . . 203

7.3.2 TheDifference of the Connectionless and Connection-Oriented Rout-

ing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3.3 Experiment with Combined GT-BE Traffics . . . . . . . . . . . . . . 205

7.4 Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Several multimedia applications for MPSoCs consist of some communication edges

that must be performed with a certain communication bandwidth. Video/audio stream-

187



188 CHAPTER 7 CONNECTION-ORIENTED GUARANTEED-BANDWIDTH FOR QUALITY OF SERVICE

ing data transmission from a core to one or more than one core needs an average con-

stant transmission rate. Hence, a specific service of the network is required to guarantee

the throughput of the data streaming. Guaranteed-bandwidth or guaranteed-throughput

service can be implemented based on an end-to-end connection setup method, where a

stream header reserves the expected bandwidth on every communication resource during

connection establishment phase before sending the video/audio streaming. By further

applying a policy where every network link cannot be consumed by considered traffic

exceeding its maximum bandwidth capacity, then a long-term saturated network condi-

tion can be avoided (non-blocking traffics flow is guaranteed).

Guaranteed-service can be implemented by allowing a link to be shared by multiple

packets using a data multiplexing technique. The shared link configuration is also com-

monly called switched virtual circuit (SVC) configuration. The following section will present

four recently published data multiplexing techniques for networks-on-chip (NoCs). One

of them is our proposed data multiplexing based on local identity (ID) division with an

ID management procedure.

7.1 State-of-the-art in Data Multiplexing Techniques For

NoCs

7.1.1 NoCs with TDMA Technique

A commonly used method to provide guaranteed-service for NoCs is a pipeline circuit

switching based on the Time-Division Multiple Access (TDMA) method. Æthereal [188]

and Nostrum [157] are NoC examples that use such methodology. Fig. 7.1(a) presents the

conceptional view of the TDMA method. The link connecting the input and output port

of the routers is shared by four packets, i.e. packet A, B, C and D. Each packet establishes

a virtual circuit configuration based on time slots allocation on the outgoing port. In the

figure, we assume that the link has 8 time slots. The more time slots are allocated for a

packet, the more bandwidth (BW) it reserves. Thus, the packets A, D, B and C reserve

50%, 25%, 12.5% and 12.5% of the maximum link BW capacity, respectively. A packet

allocated at time slot St on a link must be allocated to time slot St+1 on the next link.

Based on Fig. 7.1(a) for instance, packet D allocated to time slots S1 and S2 on the link

must be allocated to time slots S2 and S3 on the next link.

7.1.2 NoCs with SDMA Technique

The work in [131] has implemented the concepts of spatial division multiple Access

(SDMA) for guaranteed throughput NoCs. The conceptional view of the SDMA method

is presented in Fig. 7.1(b). The multiplexing concepts is based on the fact that NoC links

are physically designed with a set of wires. The SDMAmethod allocates a subset of wires
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to a given virtual circuit. The more wires (the larger the subset of wires) are allocated for

a packet, the more the bandwidth (BW) it reserves. Based on the Fig. 7.1(b), if the data

width is W = 32 bits, and we assume that all considered packets consume the maximum

link bandwidth, then packets A, D, B and C are allocated to a number of 16, 8, 4 and 4

wires, respectively, which means that every packet reserves 50%, 25%, 12.5% and 12.5%

of the maximum link BW capacity, respectively.

7.1.3 NoCs with CDMA Technique

Another method for multiplexing data on NoC links based on code-division is presented

in Fig. 7.1(c). An example prototype of the CDMA NoC method is introduced in [209].

The concept is implemented by introducing orthogonal spreading codes. The link can

be shared by conflicting packets in which every bit of the packets are encoded and accu-

mulated by a CDMA Transmitter and carried by the spreading codes to the next router.

In the next router, the accumulated encoded packets are decoded by the CDMA receiver

and then routed to the correct path. The number of available spreading codes indicates

directly the maximum number of packets that can be accumulated at the same time.

7.1.4 NoCs with IDMA Technique

Among the aforementioned data multiplexing technique, we introduce another concept

based on local identity (ID) division technique. Fig. 7.1(d) presents the concept, in which

local ID slots can be reserved by single data stream as its ID-tag. The local ID tag ap-

pears on every flit and is updated every time the data stream acquires the next link. Flits

belonging to the same stream will always have the same local ID. In order to guarantee

a correct routing function, an ID Management Unit must index every reserved ID slot by

identifying the previous ID tag of the stream/message which reserves one ID slot and

from which port the stream/message comes. Based on the Fig. 7.1(d), for instance, packet

D is allocated to local ID slot 1 (its new ID-tag), and is identified by the ID slot table as

a packet from input port 5 having previous ID tag 0 in the router R1. In the next router,

the stream/messages are routed based on their current/new ID-tags. Thus, the packet

D with current ID-tag 1 is routed to Port 1 (East) in the next router R2. The number

of available ID slots reflects the maximum number of stream/messages allowed to form

switched virtual circuit configurations on the link. The bandwidth can be guaranteed

by further implementing a connection-oriented communication protocol, where the re-

quested BW attached on a header flit bit fields is used to reserve the expected end-to-end

communication bandwidth over the network links.
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Fig. 7.1: State-of-the-Art of the data multiplexing techniques for NoCs.
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Fig. 7.2: Connection setup method using time slot TDMA-based and the IDMA-based methods.

7.1.5 Comparisons of the SVC Configuration Methods

The TDMA-based switching requires a very complex time-slot allocation algorithm to

achieve a conflict-free routing and scheduling as presented in [93] (UMARS+ ), [145]

(Virtual Circuit Configuration (V CC) Method), and by the time-slot allocation algorithm

made for µSpidergon NoC [70]. Our proposed IDMA-based method does not need such

complex time-slot allocation algorithms because the local ID slot on each outgoing link

is reserved and allocated autonomously by header flits of a streaming data during appli-

cation execution time (flexible runtime autonomous switched virtual circuit reconfigura-

tion). The same technique could be certainly applied to the TDMA-basedmethod, but the

probability in which the header flit fails to establish connection is very high especially in

high traffic situation as visually depicted in

In Fig. 7.2(a), three packets (A, B and C) are attempting to set up connections. Four

snapshots of the network at successive times are presented. The Setup packet A enters

node (2,2) from North (N) input port, and Setup packet B enters node (2,1) from West

(W) input port as shown in Fig. 7.2(a)(a). The script (A:1) means that packet A will be

programmed in time-slot 1 in the next router, and (B:2) has the same meaning as well.
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As shown in Fig. 7.2(a)(b), packet A has been forwarded to South output port of node

(2,2), and the time-slot 1 is allocated for packet A coming from N. While packet B has

also been in South output port of node (2,1), and the time-slot 2 is allocated for packet B

coming from W input port. A bold line shows the progress of the connection setup over

time. In every snapshot, the Setup packets are routed to their next link and the slot table

is incremented by one. Thus, in the next router, packets A and B will be programmed in

time-slot 2 (A:2) and 3 (B:3) respectively.

In Fig. 7.2(a)(c), packet A cannot reserve slot 2 for South output port (S) of node (2,1)

because it has been reserved for the connection of packet C, thus the connection setup of

packetA fails. Therefore, packetA is routed back along its path to remove the reservations

made so far (see Fig. 7.2(a)(c)). In Fig.7.2(a)(d), packet A has removed the reservation of

slot 1 that has been made in Fig. 7.2(a)(b).

The previous explanation has presented the disadvantage of using Time-DivisionMul-

tiplexing (TDM) switching method by Æthereal NoC. In Fig. 7.2(a)(c), there is still three

free time-slots in South output port of node (2,1) i.e., time-slot 0, 1, and 3. However,

Packet A cannot use that free time-slots, because Packet A has been programmed to re-

serve time-slot 2 that has been reserved by Packet B from West (W) input port. There-

fore, we propose a more optimistic approach by introducing ID-Tag Mapping Manage-

ment (IDM) unit to optimize dynamically the link bandwidth utilization. The IDM also

consists of an ID-Slot Table and has the same functionality as Slot Table used by Æthereal.

The communication link setup by XHiNoC is presented in Fig. 7.2(b). Once again,

four snapshots of the network at successive times are depicted in the figure. For the sake

of simplicity, only the ID slot table of the IDM in South output port is presented for both

mesh nodes. In Fig. 7.2(b)(a), a packet header A with ID-tag 1 (A(1), numerical value in

the bracket represents ID-tag) enters node (2,2) from North (N) input port, while a packet

header B with ID-tag 2 (B(2)) enters node (2,1) from West (W) input port.

In Fig. 7.2(b)(b), the packet headerA is routed to South (S) output port and is allocated

to ID slot 0. Therefore, all payload flits having ID-tag 1 from N input port in node (2,2)

will get new ID-tag 0. In Node (2,1), packet header B is routed to S output port and is

allocated by IDM to ID slot 0. Thus, the South IDM unit in this node will map all flits

having ID-tag 2 from West ( W) input port to receive new ID-tag 0. The bullets in the

figure indicate that the ID slots are being used (not free).

In Fig.7.2(b)(c), a packet header C coming from W input port with ID-tag 0 is routed

to the S output port. The South IDM unit maps packet C into ID slot 1. Hence, each

payload flit having ID-tag 0 from W input port in node (2,2) will get new ID-tag 1. While

packet A coming from N with ID-tag 0 is allocated by the South IDM unit in node (2,1)

to ID slot 1. Hence, it receives new ID-tag 1 before being forwarded from node (2,1) into

the next node. Fig. 7.2(b)(d) describes also the same mechanism, where packet C in node

(2,1), which is coming from N input port with ID-tag 1will be mapped to receive the new

ID-tag 2.
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Fig. 7.3: Connection-oriented multicast routing protocol.

If a header flit requests a new ID slot allocation to reserve link bandwidth, then the

IDM unit in each output port will search for a free ID-tag. After finding a new free ID-tag,

the IDM unit will identify and record the current ID of the header and from which port

it comes. Therefore, each payload flit belonging to the same message (because of having

the same ID-tag) will be mapped by the IDM unit to receive the new ID-tag by using ID-

based look-up table mechanism. Therefore, the XHiNoC has a lower probability that the

packet header fails to establish connection at runtime compared with the existing time

slot TDM-based method.

The complexity of the time-slot allocation algorithm in the TDMA-based method is

due to the conflict-free constraint. In the IDMA-based method, the multicast conflicts,

which potentially lead to a deadlock configuration (multicast dependency), are allowed

andwell organized by using the similar multicast conflict management presented in [224]

and [232]. The multicast flow control is based on the fact that a multicast data will not

be released from FIFO buffer at input port if all of the set multicast routing requests
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has not been granted to access the multiple output ports. If a subset of the requests is

granted, then the granted requests will be reset to avoid improper multicast flit replica-

tions. However, the work in [224] and [232] presents a deadlock-free tree-based multicast

routing with best-effort without providing a guaranteed-bandwidth service. This chap-

ter will present the same multicast routing concept with additional connection-oriented

guaranteed-bandwidth service.

The main drawback of the CDMA-based switching method is the larger latency, in

which the next downstream router must send back a spreading code to an upstream

router from where the packet flits will be encoded with the spreading code. Indeed, since

one original data bit will be spread into sequential S bits after encoding, the degree of the

data transfer parallelism between the CDMA Transmitter and Packet Sender/Receiver

blocks affects the data transfer latency in the CDMA NoC largely [209].

As mentioned openly in [131], beside its interesting characteristics, the SDMA-based

method has a few drawbacks. Best-Effort service implementation by using the SDMA

method will increase the area overhead, because introducing some buffers to prevent

contention would require deserializing data in the routers. Compared with traditional

crossbar interconnects, the SDM networks rely on multistage switches that are more com-

plex. End-to-end flow control is also difficult to implement since it would require either

a dedicated low-bandwidth communication architecture for control or reserving a 1-wire

circuit for flow control.

The work in [136] also presents a NoC design methodology based on three kernels,

i.e. traffic classification, flit-based switching and path pre-assignment and link-BW set-

ting. The traffics are classified into guaranteed-latency (GL), guaranteed-bandwidth (GB)

and best-effort (BE) traffics. The GL traffics have stringent maximum delay requirement

from data injection until data acceptance. The GB traffic requires constant end-to-end

communication bandwidth, while the BE traffic does not have bandwidth requirement

neither stringent data transfer latency. The link allocation (path assignments) in [136]

for the GL and GB traffic is static or computed off-line at design time. For a new ap-

plication, the path assignment must be done again at design time. Therefore, the pro-

posed methodology is not suitable for application mapping, where the applications are

known after chip-manufacturing. The work in [200] also presents a scheduling function

for a time-constraint streaming communication on NoCs. The methodology considers

communication scenario overlap during application exchanges. However, the schedul-

ing functions together with routing path assignments are also computed at design time

after application mapping phase.

By using the IDMA-based method, a link-level flit flow control can be easily imple-

mented with a credit-based method between two NoC routers to allow at-instant-time

conflict between flits of different data streams, and to control the flow of wormhole pack-

ets when our NoC would be designed for Best-Effort Service. By using a runtime connec-

tion establishment made autonomously by a header flit, where the requested bandwidth

is attached on the header and tail flits, the average communication bandwidth of the data
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stream can be guaranteed. Thus, it results in an easy implementable end-to-end flow

control initiated by a compute element at a sender node, and is suitable for the post-chip-

fabrication application mapping.

7.2 Connection-Oriented Communication Protocol

The connection-oriented multicast routing protocol implemented in our NoC consists of

four main phases, which are explained in the following items.

1. Connection establishment. In this first phase, the data producer node will scatter

header flits to multiple destination nodes (See Fig. 7.3(a)). If the data will be sent

to a single destination node (unicast data communication), then the producer node

will send only one header flit.

2. Connection Status Response. In this second phase, every destination analyzes the

header flit to know if the header has successfully established the multicast con-

nection and reserved bandwidth on each communication media to guarantee the

required communication bandwidth. Therefore, every destination sends back a re-

sponse flit to inform the data producer node about the status of the connection (See

Fig. 7.3(b)).

3. Data Transmission. If the producer has known that the multicast connection is suc-

cessfully set up and the bandwidth on each reserved communication media is guar-

anteed, then it will send the data stream into the NoC through the same path set up

previously by the header flits. Fig. 7.3(c) shows one of many possible ID slot reser-

vation results. If one of the multicast connections is not successfully established,

then the producer node will firstly terminate the multicast connection by sending a

tail flit, then send again new header flits.

4. Connection Termination. In the fourth phase as presented in Fig. 7.3(d), tail flit is

injected to close the multicast connection at the end of the data sending phase.

In order to close the established connection, a tear down method is not used, in which

a single-flit control message/packet is backtraced from target to the source node follow-

ing the connection path to remove the reserved communication resources. Instead, a pro-

gressive approach for connection termination is used as described before and depicted

in Fig. 7.3(d). The backtraced routing method can not only increase complexity of the

routing engine structure because of the need for a special module to record the routing

history of the message header, but also can cause a backtrace deadlock configuration as

presented in Fig. 7.4. In the figure, it looks that Packet A injected from North2 (N2) port

on router R1 and Packet B injected from East (E) port on router R2 make a backtrace

routing. Hence, deadlock configuration occurs because channels requested by Packet A

and B are full and being shared and used by other packets.
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7.2.1 Runtime Local ID Slot and Bandwidth Reservation

Local ID slot reservation in our NoC is made autonomously by the header flits at runtime

during application execution. Hence, a specific slot allocation algorithm like time slot

allocation in TDMA method is not needed. Conflicts between flits in the IDMA-based

switching method is allowed. Fig. 7.5 presents 3 snapshots on how the conflict between

header flits is solved autonomously by the header flits. At router node (1,1), we can see in

Fig. 7.5(a) that header flit A from West input port with current ID tag 1 (A : 1) reserves ID

slot 0 and programs the reserved ID slot with its previous (old) ID and the port number

from which it comes (A : 1, W ). The stream/message A will use the link connected to the

South outgoing port of router node (3, 3) with new ID tag 0 (A : 0).

In the same router node, the headers of stream B : 0 from North and stream C : 0 also

arrive at the same stage. They will compete with each other to acquire the same South

output port. We assume that the arbiter unit at the South output port firstly selects header

flit B as shown in Fig. 7.5(b). Now, the header flit B reserves the next free ID slot 1, and

header flit C must be held in the FIFO buffer while waiting for selection from the arbiter

unit. Header flit C at the next stage can be switched afterwards to the South outgoing

port and it reserves the next free ID slot 2 as presented in Fig. 7.5(c). Now, 3 ID slots have

been reserved by the stream/message A, B and C. In the next time stages, when data

payload flits of the data streams are switched out to the South port, then the IDM unit

will assign every flit with the reserved id slots by identifying the old ID-tag of the flit and

from which port the flit comes.

Fig. 7.6 shows four snapshots of three data streams A, B and C competing to acquire

the same outgoing link, which is the extended view of the Fig. 7.5. On the right-side of

the Fig. 7.6, we can see the current status of the reserved ID Slot and BW of the directional

link from the South output port of the router node (3, 3) to the North input port of the

router node (3, 2), and the input port number, the previous and new ID-tag of each flit

flowing on the link in every time stage t. The streams A, B and C are injected to the NoC

to consume 33.33% of the maximum BW capacity (Bmax) of the NoC link (33.33% Bmax).

Thus in the figures, the consecutive flit is shown three hops behind the previously routed

flit in non-blocking situation. Fig. 7.6(a) shows that flits A1, B1 and C1 compete each

other to acquire the link connecting node (3, 3) and (3, 2), and it looks also for instance
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Fig. 7.5: Autonomous runtime local ID slot reservation allowing conflict of multicast headers.

that flit B2 is three hops behind the flit B1.

Fig. 7.6(b), Fig. 7.6(c) and Fig. 7.6(d) show respectively the next snapshots when the

flits A1, B1 and C1 are switched out to the link between node (3, 3) and (3, 2). It look

in the figures, that the consecutive flits of the message A, B and C keep moving even

if the previously routed flits are blocked due to contention. For instance, flit B2 moves

from node (1, 4) to (2, 4), to (3, 4) until node (2, 3) as shown in Fig. 7.6(a) (Snapshot 1),

Fig. 7.6(b) (Snapshot 2), Fig. 7.6(c) (Snapshot 3) and Fig. 7.6(d) (Snapshot 4), respectively.

However, because each of the tree contenting flits requires only 1
3
of the link BW capac-

ity, the total BW consumption of the three messages does not exceed the maximum BW

capacity of the link Bmax, or it is exactly equal. Therefore, they can shares the link well

with constant data throughputs. This situation will certainly have no impact on the data

injection and acceptance rates in their source and destination nodes. Thus, the end-to-end

communication BW of each message is guaranteed and performed automatically at run-

time. Based on the data flow demonstration in the Fig. 7.6, our guaranteed-BW service

with the IDMA method is tolerant to message contention, which is certainly difficult to

achieve, when we use the TDMA method.

7.2.2 ID-based Routing Mechanism with Bandwidth Reservation

As explained in Section 7.2.1, every message or data stream reserves one ID slot as its

ID-tag on each communication link, and flits belonging to the same message will have

the same ID tag. Therefore, at every input port, we implement a routing engine, which

consists of a routing reservation table (RRT) and a routing state machine (RSM). Fig. 7.7 shows

conceptional view of the ID-based routing organization by presenting a link connecting

the output and input ports of two adjacent routers (R1 and R2).

In Fig. 7.7(a), we can see that a header flit with local ID-tag 1 from West (W ) input

port is switched out to an output port of the router R1. The header flit will search for a
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Fig. 7.6: Conflict management and link sharing for contenting multicast payload flits.
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free ID slot that can be used as its new ID-tag and also check the BW availability of the

required link. If the freely available BW on the link is less than its required bandwidth

(AvBW < ReqBW or UsedBW + ReqBW > MaxBW ), or there is no more free available

ID slot on the link, then the header flit will be assigned to a status control ID slot M .

In our current NoC with the ID-tag field is 4 bits resulting in 16 available local ID slots

per link. Hence, M is set to “1111” or “0xF”. Once a header flit is assigned with ID tag

0xF, it will be always assigned with the same ID tag when entering the next links until

it reaches its target node. The destination node will then send back a response flit to the

source node to inform that the header fails to reserve bandwidth or ID slot on a certain

link in the NoC.

In Fig. 7.7(a), we assume that BW space and free local ID slots are still available. It

looks that the ID slots 0 and 1 have been used (“U”) by other stream/messages, and

the local ID slot 2 is still free (“F”). Hence, the header flit reserves the ID slot 2 as its

new ID tag, and set the status of the local ID slot 2 from “free” to “used” state. The

BW accumulator unit in the MIM module will then add up the current used BW space

with the required BW of the flit (UsedBW ⇐ UsedBW + ReqBW ). Thus, the number of

available BW spaces on the link is now reduced (AvBW ⇐ MaxBW − UsedBW ).

As long as the FIFO buffer at an input port of the router R2 is not full, the header flit

is buffered in the FIFO queue. In the next cycle, the header flit is buffered in the single

buffer of the RE unit and at the same time, the RSM unit computes the routing direction

(South S in this example) based on the target address appear in the Xt and Y t bit fields

of the header . This routing information is also assigned in one slot of RRT unit based on

its local/current ID tag. In this case, the current local ID tag is 2, thus the South routing

slot is written in the register (slot) number 2 of the RRT unit.

Other headers belonging to the same stream and flowing to the same link as well as

the data payloads will not make a local ID slot reservation. The ID management unit will

give them a new ID-tag by checking their ID-tag and the port number from where they

come, and then find a match information the ID Slot Table as shown in Fig. 7.7(b). In

the same manner, the RE routes them by fetching a routing direction from the RRT slot

number according to their ID-tag. In Fig. 7.7(b), we can see a payload flit (DBod) with ID-

tag 1 coming from input portW (West) is switched out from an output port of router R1 to

the NoC link, and is assigned with the new ID-tag 2 according to the match information

found in the ID Slot Table. Thus, the payload is in-flight on the link with local ID-tag

number 2 and flows to the input port of the next router. The payload flit is then routed by

the RE unit at an input port of the router R2 by fetching a routing direction from the slot

number 2 (according to its local/current ID-tag) in the Routing Reservation Table.

7.2.3 Experiment on Radio System with Multicast Traffics

In this section, the connection-oriented multicast method will be verified on a radio sys-

tem application benchmark fromNokia [145]. The allocation of each task after application



200 CHAPTER 7 CONNECTION-ORIENTED GUARANTEED-BANDWIDTH FOR QUALITY OF SERVICE

...

ID

M

E N S LW

H
ead

X
s

Y
s

X
t

Y
t

RE

Routing State
Machine

0

0

1

W

H
ead

X
s

Y
s

X
t

Y
t

H
ead

X
s

Y
s

X
t

Y
t

2

H
ead

X
s

Y
s

X
t

Y
t

2 2

... ... ... ... ......

ID

3

2

1

0

1

E
N
W
S
L

0
1
0

E
N
W
S
L

A
rbiterE

N
W
S
L

MIM

FIFO Queue

RE

L

W

W

From nID

0

1

2

3
...

M

Sta.

F

U

U

F

F

...

4.Read Buffer +
Routing ComputeBuffer

3.Write
Traversal

2.Switch/Link
Arbitration
1.Output

0
0

ID Slot Table Routing Reservation Table

write

w
rit

e

Search for a free ID slot

ID
 r

ep
la

ce

ID slot 2 is found free
and reserved to record
old ID and from which
port the header come.
’Free’ status is set
to ’Used’ status.

U
F

Swrite route
N

oC
Li

nk

IDN
Sta.

R2R1

Used status
Free status
new local ID status
new local ID:

:
:
:

R
eq

B
W

R
eq

R
eq

R
eq

B
W

B
W

B
WReqBW

UsedBW

UsedBW
+

C
he

ck
 B

W

(a) ID-tag update and routing reservation by a header flit

...

ID

M

E N S L

Routing Reservation TableID Slot Table

W
D

B
od

0

0

1

W

D
B

od

D
B

od

2

D
B

od
2 2

... ... ... ... ......

ID

3

2

1

0

1

E
N
W
S
L

1
1
0
1
0

E
N
W
S
L

A
rbiterE

N
W
S
L

MIM

FIFO Queue

RE

L

W

W

...

From nID

0

1

2

3
...

M

Sta.

U

U

U

F

F

...

4.Read Buffer +
Routing ComputeBuffer

3.Write
Traversal

2.Switch/Link
Arbitration
1.Output

D
ata P

ayload

D
ata P

ayload

D
ata P

ayload

D
ata P

ayload
F

C
he

ck

ID
 R

ep
la

ce

Machine
Routing State

IDN
Sta.

N
oC

Li
nk

R1 R2

new local ID
new local ID status
Free status
Used statusU :

:
:
:

(b) ID-tag and routing indexing by a databody flit

Fig. 7.7: Local ID slot reservation (indexing) and routing table slot reservation (indexing).



7.2 CONNECTION-ORIENTED COMMUNICATION PROTOCOL 201

a

b

c

d

e

f

h

i x2:

x2:

x1:

x1:g

x4:

x3:

x3:

x4:

x6:

512 MB/s

64 MB/s

64 MB/s

256 MB/s

64 MB/s

512 MB/s

8 MB/s

16 MB/s

64 MB/s

1 3

10

2 4

5 6 7 8

119

13 14 15

to all
from all

16

12

c
c
c

c

a a a

h

h h

i
i

b

b

b b

b b

d

d

e

g

f
f

f
f

j

k

(a) Traffics on-chip radio system

 0

 100

 200

 300

 400

 500

 600

 700

 800

a b c d e f g h i j k

ba
nd

w
id

th
 (

M
B

/s
)

communication pair

expected
setpoint

actual/measured

(b) Setpoint and actual communication BW

Fig. 7.8: Node-to-node traffic flow for an on-chip radio system and the bandwidth measurement

results.

mapping on 2D 4 × 4 mesh topology is presented in Fig. 7.8(a). In general, the applica-

tion consists of 11 communication edges. Two of them i.e. communication a and h are

multicast data communication. Communication j is a broadcast (one-to-all) data commu-

nication, where the core at node (0,0) broadcasts data to all other cores. Communication k

is all-to-one data communication, i.e. core at node (0,0) receives data from all cores.

The injection rate in our NoC is controlled by inserting jitters between two consecutive

data flits. Jitter is a zero flit inserted in one cycle period. The more jitters inserted between

two consecutive data flits, the lower the setpoint of the bandwidth (BW). If one data flits

are injected with Njit number of jitters in between, then the BW setpoint will be Irate =
1

Njit+1
flit per cycle or word per cycle, or one data flit is injected in every Njit + 1 number

of cycles. The maximum BW capacity of our NoC link is 1 GHz × 4 × 1
2

= 2000 MB/s.

Since our NoC router can perform 5 simultaneous IO connections, then the maximum

BW capacity of the NoC router is 5 × 2000 MB/s = 10 GB/s. Thus, if we expect a

BW of 512 MB/s, then we can set Njit = 6 resulting in BW setpoint of 4000 × 1
6+1

=

571.43 MB/s. If we set Njit = 7, the the BW setpoint will be 4000 × 1
7+1

= 500 MB/s.

Finer BW granularity can be controlled by a compute element which actually produces

data that will be sent to network interface with an expected BW or end-to-end data rate.

Fig. 7.8(b) shows the measurement of the expected, setpoint and actual measured BW

for the on-chip radio system application. It looks like the minimum bandwidth require-

ments of all communication edge can be meet. The expected bandwidth is shown on

the right side of the radio system traffic scenario in Fig. 7.8(a). The setpoint BW is set to

each source node injection rate in the RTL (testbench) simulator based on the insertion

of the number of jitters to set the BW requirement. The actual and average bandwidth

communication of each communication pair is measured at the destination node.

For the sake of simplicity, the ID slot reservation results of the communication a − j

and communication k is separated. Fig. 7.9(a) presents one of many possible local ID slot

reservations made autonomously by the header flits for communication edge a until j. If
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Fig. 7.9: One ofmany possible runtime local ID slot reservation configurations for Communication

a − j and Communication k.

the communication j is performed firstly, the multicast header flits will be sent flit-by-flit

to all other nodes. Thus, this broadcasting communication edge will reserve the first local

ID slots on every communication media (i.e. ID slot 0). The other communication edges

(communication a–i), which arrive later to use the medium will then reserve the rest of

the ID slots that have not reserved by other communication pairs including the commu-

nication j. Fig. 7.9(b) also depicts one of many possible combinations of the local ID slot

reservations for communication edge k when this connection is set up after all other com-

munication edges have established their connections. This communication edge will also

reserve the local ID slots that have not been reserved by the communication a–j. The

bottom part of the figure exhibits the ID slot reservation in the Local output port of the

router node 1. The runtime of the local ID slot reservation is very flexible because the

header flits, which reserve the ID slots autonomously, will check any available (free) ID

slots that can be utilized as their ID-tag from the ID slot table.

Fig. 7.10 presents the reserved BW spaces on every output port of all 16 router nodes

as well as the total BW consumption of all output ports on each node. Fig. 7.10(a) shows

the BW reservation for communication edge a until j, while Fig. 7.10(b) presents the BW

reservation for communication j. The figures represent a congestion situation on each

router node and hotspot locations in the network. In Fig. 7.10(a), we can see that the

hotspot occurs at node 6, where total BW consumption of all output port in the node is

about 4100 MB/s, or about 41% of total maximum BW capacity (10 GB/s) of the router.
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Fig. 7.10: Number of bandwidth reservations at each outgoing port of all 16 network nodes.

In Fig. 7.10(b), we can see clearly that the hotspots are located in the local output port of

the router node 1, in the south output port of the router node 5 and of the router node 9,

respectively.

7.3 CombinedBest-Effort andGuaranteed-ThroughputSer-

vices

7.3.1 Microarchitecture for Combined GT-BE Services

The generic microarchitecture of the XHiNoC router is presented in Fig. 7.11. The router

is designed with modular-oriented method, where each modular component is regularly

instantiated for each input-output port. The XHiNoC in general, consists of three compo-

nents in incoming port i.e., a FIFO buffer for Best-Effort (BE) messages (QBE), FIFO buffer

for Guaranteed-Throughput (GT) messages (QGT)) and a Routing Engine with multiplexed

data buffering (REB). In each outgoing port, there are two components, i.e. a Multiplexor

with ID-tag Management unit (MIM) and an Arbiter (A) unit. In order to keep the router

size small, the depth of each virtual channel is set to 2. As shown in Fig. 7.11, only single

FIFO queue is allocated in the Local input port. Both the BE and GT messages can be

buffered in the single FIFO queue component.

The ID management unit plays an important rule to interleave flits of different mes-

sage in the same queues and to perform the flexible runtime communication resources

reservation. The IDmanagement unit is implemented in theMIM component at each out-

put port. The detailed interconnected data and 1-bit control nets in the crossbar switch

are presented in Fig. 7.12. The arbiter unit selects a data flits from input ports, which will

be switched to the output port of the MIM module.

Because of using the wormhole cut-through switching with the ID-slot management, a

contention between two data flits to acquire a similar outgoing channel can occur. There-
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fore, our NoC is also equipped with a link-level control to avoid data overflow in the

NoC. When a contention happens, FIFO queues occupied by the contenting data flits at

incoming ports will be busy or might be full. The congestion (full condition) signals are

then traced back to the upstream nodes to avoid other data flits entering the congested

FIFO queues. Fig. 7.12 presents the full flag (ff ) signals from FIFO queues in one router

to the modules A (arbiter) and modules MIM (multiplexor with ID-management unit) in

the neighbor router.

Fig. 7.13 shows the detail structure of the modular units in the input port. The REB

component consists of a Dual-In Route Buffer, a Routing Engine, a Selector Unit (SU), and

a Grant Controller. The RE component gives priority to route data from QGT buffer and

stores the data in the Dual-In Route Buffer, if each buffered data in the QBE and the QGT

request a routing service to the RE component. The RE will serve the routing request

from the data in the QBE after the QGT is empty. However, in case that a BE flit is being



7.3 COMBINED BEST-EFFORT AND GUARANTEED-THROUGHPUT SERVICES 205

SU
es(0)

es(1)

busy

select

REB (West)

grant

r(3,1)
r(3,2)
r(3,3)
r(3,4)
r(3,5)

a(3,1)
a(3,2)
a(3,3)
a(3,4)
a(3,5)

f(0)

f(1)

QBE

QGT

REenR(0)

enR(1)

enW(0)

enW(1)

D

DBE

DGT

Type

Dest.

ID

Data line
3

ftyp(3)

D
ua

l−
In

 R
ou

te
 B

uf
fe

r

GC

Fig. 7.13: The detail components in the incoming port.

routed and being stored in the Dual-In Route Buffer of the RE unit, while a GT flit is just

being buffered in the QGT, then the RE unit will serve the GT flit after the BE flit has been

switched out to its destinate output port. The aforementioned mechanism is controlled

by the Selector Unit (SU) as presented in Fig. 7.13.

As shown in Fig. 7.13, the full flags are a two-bit signal. One bit is from the BE Queue

(QBE) and the other bit is from the GT Queue (QGT ). If an arbiter unit in an upstream

node will select a BE flits which will be switched out to the link in the next cycle, and

the full flag from the QBE in the downstream node is set, then the arbiter will reset its

selection. The same mechanism is also valid for GT flits.

7.3.2 The Difference of the Connectionless and Connection-Oriented

Routing Protocols

Table 7.1 shows the binary encoding of 8 flit types to differentiate packets used for the

connectionless best-effort (BE) and the connection-oriented guaranteed-throughput (GT) routing

protocols services. The flit types encoding of the BE and GT messages are set different

to provide different services for the messages in the on-chip network and routing layer

protocols.

7.3.3 Experiment with Combined GT-BE Traffics

In this subsection, an experimental simulation is run in which BE and GT messages are

mixed in the matrix transpose traffic scenario (node (i, j) send a message to node (j, i)).

As shown in Fig. 7.14, there are 12 communication pairs in the transpose traffic pattern,
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Tab. 7.1: Flit types encoding for BE and GT packet services.

Hex Binary Flit type

0 “000” not data

1 “001” header flit for BE packets

2 “010” databody for BE packets

3 “011” tail flit for BE packets

4 “100” header for GT packets

5 “101” databody for GT packets

6 “110” tail flit for GT packets

7 “111” response/status flit

Comm.1

Comm.2

Comm.3

Comm.4

Comm.5 Comm.6
Comm.9

Comm.8

Comm.7

Comm.11

Comm.10Comm.12

0.111

0.1
0.1667

0.1429

0.2

0.125

0.125
0.1667

0.111

0.1429
0.2

0.1

13 14 15 16

9 11 12

5 6 7 8

1 2 3 4

10

BE

GT

GT

BE
BE

BE

GT

GT

BE BE

BE

BE

Comm.1

Comm.2

Comm.3

Comm.4

Comm.5

Comm.6

Comm.7

Comm.8

Comm.9

Comm.10

Comm.11

Comm.12

Comm.# Type
Rate
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Rate
in MB/s

0.125

0.1667

0.111

0.1429

0.2

0.1

0.125

0.1667

0.1

0.2

0.111

0.1429

BE

BE

BE

BE

BE

BE
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GT
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400.00

533.33

355.55
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400.00
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320.00
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457.28

Fig. 7.14: Mixed GT-BE message data transmissions in the transpose traffic scenario.

i.e. from Comm. 1 until Comm. 12. The Comm. 2, Comm. 4, Comm. 7 and Comm. 10 are

set as GT-type injector-acceptor communication, while the remaining 8 communication

pairs are set as BE-type injector-acceptor communication. A node symbolized with BE is

a node sending a BE message, while a node symbolized with GT is a node sending a GT

message.

In the simulation, the workload sizes (number of injected message per producer) are

set to 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000 flits. The injec-

tion rate per producer (in number of flits per cycle) is set randomly. The decimal val-

ues outside the source nodes (beside the paths of each communication pair) presented

in the Fig. 7.14 are the expected data communication rates measured in an amount of

flits per cycle (fpc). A table in the right-side of the figure presents in detail the 16 com-

munication pairs together with their expected data injection rates in flits per cycle (fpc)

and Megabyte per second (MB/s). For example, Comm. 1 with BE communication pro-
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Fig. 7.15: The transfer latency (delay of acceptance) of the header, response and the first databody

flits.
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Fig. 7.16: The tail acceptance delays with different workload sizes for each communication pair.

tocol is expected to be injected from source nodes with 0.125 fpc, which is equivalent

to 0.125 × 4 × 800 = 400 MB/s. The maximum link capacity of the XHiNoC proto-

type is 0.5 fpc, or with 800 MHz data clock cycle frequency of the XHiNoC router proto-

type with combined BE-GT services and 32-bit data word, the maximum link capacity is

0.5 fpc×4 Byte×800 MHz = 1600 MByte/s or 1.6 GByte/s. Therefore, the bisection band-

width is 2× 1.6 = 3.2 GByte/s and the router bandwidth capacity is 5× 1.6 = 8 GByte/s.

Fig. 7.15 presents the measurement of the delay (acceptance latency) of the header,

the first databody flit and the response flits in clock cycle period of each communication

pair. The response flits will exist only for the GT communication pairs, i.e. Comm. 2,

Comm. 4, Comm. 7 and Comm. 10. Fig. 7.15(a) shows the latency measurement for

Comm. 1 until Comm. 6, while Fig. 7.15(b) presents the latencymeasurement for Comm. 7

until Comm. 12. The transfer delay of the header flit is measured from its injection node

until its destination node. While the transfer delay of the response flit is measured from

the destination node until the injection node and is accumulated with the transfer delay

of the header flit. The transfer delay of the first databody flit is measured from the injec-

tion node until the destination node and is accumulated with the previously measured
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Fig. 7.17: The actual communication bandwidth measurement with different workload sizes for

each communication pair.

transfer delays of the header and response flits.

The measurement of the tail acceptance delays with different workload sizes for each

communication pair is presented in Fig. 7.16. Fig. 7.16(a) shows the tail acceptance latency

measurements for Comm. 1 until Comm. 6, while Fig. 7.16(b) shows the tail acceptance

latency measurements for Comm. 7 until Comm. 12. In general, it looks that the tail

flit acceptance latencies are increased linearly when the workload (data burst) sizes are

incremented.

The measurement of the actual communication bandwidth with different workload

sizes for each communication pair is presented in Fig. 7.17. Fig. 7.17(a) shows the actual

communication bandwidth measurements for Comm. 1 until Comm. 6, while Fig. 7.17(b)

shows the actual communication bandwidth measurements for Comm. 7 until Comm. 12.

In general, it looks that the actual communication bandwidths are constant when the

workload (data burst) sizes are incremented. The slopes of the tail flit transfer latencies of

each communication pair presented in Fig. 7.16(a) and Fig. 7.16(b) have relationship with

the communication bandwidth measurements presented in Fig. 7.17(a) and Fig. 7.17(b).

The larger the slopes, the larger the communication bandwidth of the communication

pairs.

Fig. 7.18(a) and Fig. 7.18(b) show the distribution of the ID slots and bandwidth spaces

reservation at each communication link connected directly to an outgoing port in the

NoC. Themeasurements aremade at each outgoing port of everyNoC router node (router

node 1 until router node 16) in the 2D 4 × 4 mesh NoC. Fig. 7.19 presents the transient

responses of the actual injection and acceptance rates as well as the expected constant

data rate for Comm. 1 until Comm. 6, while Fig. 7.20 shows the transient responses for

Comm. 7 until Comm. 12.

The simulations in this subsection have exhibited a very interesting characteristic of

the XHiNoC that performs a very flexible runtime communication resource reservation

to serve both the BE and GT messages. The BE and GT messages are switched through
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Fig. 7.18: The distribution of the ID slots and bandwidth reservation at each output port of the

router nodes.

Tab. 7.2: Synthesis results of the connection-oriented guaranteed-bandwidth (GB) multicast

routers using 130-nm CMOS technology library.

GB-only BE-GB

Target frequency 1 GHz 800 MHz

Total logic cell area 0.135 mm2 0.179 mm2

Est. net switch. power 15.982 mW 18.447 mW

Est. cell intern. power 43.139 mW 44.406 mW

Est. cell leakage power 29.6 µW 37.7 µW

virtual circuit configurations. The expected data communication rates in the simulation

are set in such a way that the NoC is not saturated. Therefore, in line with the general

performance characteristic of the XHiNoC that has been explained in Chap. 4, the com-

munication latency is increased linearly with the workload size incrementation, and the

communication bandwidth can be kept constant even if the workload sizes are incre-

mented.

Due to the non-saturating condition, the expected bandwidth of every communica-

tion pair can be fulfilled. The data acceptance in the experimental results are also lossless,

i.e. all injected flits in source nodes are accepted in the target nodes. Although some

overshots of the actual measured data acceptance rates appear as shown in Fig. 7.19 and

Fig. 7.20, the total average communication bandwidth of every end-to-end communica-

tion partner is guaranteed equal to the expected constant data rate. We can see that the

acceptance rate of every communication partner fluctuates around the expected constant

data rate, but the actual measured injection rate is always equal to the expected constant

data rate. The overshots are due to contentions between messages to access the same link

in the NoC. This situation has also been described visually in Fig. 7.6.
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Fig. 7.19: Transient responses of the measured data injection and data acceptance rates for com-

munication 1–6.
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Fig. 7.20: Transient responses of the measured data injection and data acceptance rates for com-

munication 7–12.
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7.4 Synthesis Results

The synthesis results of the NoC prototypes with multicast guaranteed-bandwidth (GB)

service and the NoCwith combinedmulticast best-effort (BE) and guaranteed-bandwidth

(GB) are presented in Table 7.2. The synthesis is made using 130-nm CMOS standard-cell

technology library from Faraday Technology. We used Design Vision tool from Synopsys

to synthesize the NoC routers. The NoC with GB-only service can be synthesized with

target frequency of 1 GHz. While the NoC with combined BE-GB service can be clocked

with 800 MHz. The reduction of the allowable data frequency of the BE-GB NoC is due

an additional latency to the critical path of the synthesized NoC circuit.

As presented in Table 7.2, the area overhead if the multicast BE-GB NoC over the GB-

only NoC is about 33 %. This area overhead is certainly due to the implementation of the

double FIFO buffers at each input port of the BE-GB microarchitecture. The complexity

of the arbitration control procedure to differentiate the services for both BE-type and GB-

type messages has contributed to not only the area overhead, but also the longer critical

path of the BE-GB NoC compared to the GB-only NoC.

Comparisons to other NoCs are given as follows. The maximum frequency to transfer

data in the Æthereal NoC [187], which combines the BE and GT services with 32-bit word

size, is 500 MHz using 130-nm standard-cell technology, resulting in an aggregate band-

width of 5 × 500 MHz × 32bits = 80 Gbit/s. The aggregate bandwidth of the XHiNoC

router (static routing, 2-depth FIFO, 32-bit word size) is 5 × 800 MHz × 32bits × 1
2

=

64 Gbit/s. The total logic area of the Æthereal NoC is 0.2600 mm2. In general the max-

imum data frequency of the XHiNoC is better, but its aggregate bandwidth is divided

by two because of two cycle delay between every flit during data link traversal pipeline

stage. However, the logic area overhead of the XHiNoC is lower than the Æthereal NoC.

NOSTRUMNoC [157] has reported that its router consumes 13896 equivalent NAND

gates (independent from the standard-cell technology). Without reporting the logic area,

SoCBUSNoC [211] can be clocked at 1.2 GHz in a 180-nm technology process. The DSPIN

NoC router [181] with 90-nm technology has a gate area of about 0.082mm2 after gate-

level synthesis (4-depth GS (guaranteed-service) queue, 8-depth BE (best-effort) queue,

34-bit flit size). On a 500 MHz implementation, each GS channel in DSPIN has a band-

width of 8 Gbit/s (40 Gbit/s for 5 GS channels). By using a 180-nm standard-cell library,

the number of equivalent gates of the CDMANoC presented in [209] is 272806 gates with

32-bit word size. The postlayout area of the SDMA NoC presented in [131] by using

130-nm technology is 0.023737 mm2 with critical path of 0.44 ns.

7.5 Summary

The connection-oriented multicast NoC routers with guaranteed-bandwidth service has

been presented in this chapter. This chapter has also presented the efficiency of our pro-
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posed concept and microarchitecture to combine both the best-effort and the guaranteed-

throughput (GT) or guaranteed-bandwidth (GB) service. The interesting feature of the

service-combination in the XHiNoC is that the flits of the BE-type and GB-type messages

can be mixed and interleaved in the same NoC communication channel. The size or the

depth of the FIFO buffer for BE and GB messages is the same, i.e. 2 register spaces. A

soft guarantee is given to the GB-type messages in the virtual buffers placed at the input

port. When GT-buffer and BE-buffer are occupied by the GT-type flits or BE-type flits at

the same time, respectively, then the routing engine will route firstly the data flit in the

GT-buffer until the GT-buffer is empty.

The main difference between the BE and GB communication is the data transport pro-

tocol phases used to transfer the messages into the NoC. The GB communication uses

a three-phase communication protocol. Before sending the GB-type messages into the

NoC, a header flit for a unicast message (multiple header flits for a multicast message) is

injected to the NoC to reserve bandwidth (BW) and local ID slots on every intermediate

communication channel. When the header flit has attained the destination node, then

the destination node sends a response flit back to the source node to inform the status

of the connection attempt. The source node will then analyze the response flit, whether

the connection is successful, i.e. the requested BW is meet, and ID slot reservation per

required links is available. If both requirements are meet, then the source starts injecting

the message data. In the BE service, the message data flit (payloads) are sent to the NoC

soon after the header flit is injected. Thus, there is no need to wait for a response from

destination node.

The issue about BW share between the GB and BE messages is currently a very in-

teresting topic in the NoC research area. Another version of the BE-GT NoC can be still

extended from our current BE-GB NoC implementation to optimize the NoC area and

the complexity of the NoC. In this way, the BW requirement of each message is implicitly

represented in the ID slot reservation, and BW constraint for eachmessage has been deter-

mined in the software application level. Thus, BW accumulator unit can be removed from

the microarchitecture. If we set that the maximum BW of each communication channel is

Bmax, and the number of available local ID slot on each channel is H , then each message,

which will reserve one ID slot on every intermediate communication channel, can be in-

jected with a constrained BW Binj where Binj ≤
Bmax

H
. Therefore, we will be able to guar-

antee that each communication link will not be overloaded, i.e. Bmax ≤
∑Nmsg

h=1 Binj(h),

where Nmsg is the number of messages sharing the communication link, and h is an indi-

vidual message, such that Binj(h) is the BW requirement of the individual message.



214 CHAPTER 7 CONNECTION-ORIENTED GUARANTEED-BANDWIDTH FOR QUALITY OF SERVICE



Chapter 8

Concluding Remarks
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A concept to design and to implement the VLSI microarchitecture of the XHiNoC

routers together with advantageous services enabled due to the proposed concept has

been presented so far in the previous chapters. The proposed concept allows a flexi-

ble support for the communication media share methodology by using the variable (dy-

namic) local ID management. This chapter will summarize the contributions of the work

(Section 8.1) and some outlooks related to potential future research investigations in the

area of NoC research field (Section 8.2).

8.1 Contributions of the Work

The new contributions of this thesis are summarized in the following points.

1. Novel wormhole switching method [223] [229], [237], where different wormhole mes-

sages can be interleaved among each other at flit-level in the same bufffer pool with-

out using virtual channels. The main problem in the traditional wormhole switch-

ing method is the head-of-line blocking problem. The problem can be solved by us-

ing virtual channels. However, the solution based on the use of virtual channels will

increase the logic gate consumption because of the additional virtual buffers and

arbitration unit and control logics for the virtual buffers. Moreover, due to the addi-

tional arbitration and control logics, the critical paths of the NoC router with virtual

channel will be increased. The critical paths can be reduced by introducing a new

pipeline stage, but this solution will add up the NoC router latency because of the

additional pipeline stage. This thesis proposed a new wormhole switching method
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without using virtual channels. The proposed wormhole switching method solve

the head-of-line blocking problem by allowing flits of different messages to be in-

terleaved in the same communication. The flit-level message interleaving technique

is enabled due to the concept of the variable (dynamic) local ID tag management

presented in this thesis.

2. Novel theory and VLSI architecture for deadlock-free multicast routing [234], [224], [227],

[232] suitable for NoCs. The main problem to implement a multicast routing ser-

vice in network and routing protocol layer is the multicast dependency leading to

deadlock configuration due to contention between multicast messages to acquire

the same outgoing ports in the router. Some theories and methodology to design

a deadlock-free multicast routing have been introduced in the literatures. Some of

them solve the problem by using virtual channels that has drawbacks as mentioned

in the previous point. Some of them uses a centralized routing (source routing)

approach that run a preprocessing algorithm to compute a deadlock-free paths at

source node before sending the multicast message into the network. This approach

will introduce time-overhead due to the message preparation algorithm. This thesis

proposed a distributed multicast routing approach without the preprocessing algo-

rithm. The multicast contentions is solved by using a simple and smart technique

called hold-release multicast tagging mechanism. This technique is enabled due to the

concept of the variable (dynamic) local ID tag management presented in this thesis.

3. Novel strategy to design runtime adaptive routing selection [236] based on bandwidth

space occupancy between alternative outgoing ports (bandwidth-aware adaptive rout-

ing selection) or based on its combinationwith the contention-information (contention-

and bandwidth-aware adaptive routing selection). Each multiplexed message on an out-

going link will reserve one ID slot, thus every outgoing port can provide infor-

mation to the routing engine about the number of messages in-flight on the link

(contention information) by checking the used or freely available ID slots on the

link. Information about the available bandwidths can also be provided by the out-

going port. When the header of each message brings information about the data

communication bandwidth requirement and save the information into the outgo-

ing port registers, then the amount of the consumed bandwidth space on the link

can be measured. The routing engine at input port can then use both information,

i.e. the number of free available bandwidth and the number of free ID slots of al-

ternative outgoing ports, to make routing decision (output selection) at runtime.

Some works in the literature use FIFO buffer occupancy (congestion information) to

make routing decision at runtime, which has a few drawbacks. The performance of

the contention- and bandwidth-oriented adaptive routing is better than the queue-

length-based adaptive routing selection strategy.

4. Novel efficient approach enable to combine connectionless best-effort and connection-oriented

guaranteed-throughput services [221]. By using the concept of the variable local ID-
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division multiple access technique, service for the best-effort (BE) and guaranteed-

throughput (GT) messages can be efficiently implemented on single NoC router

with optimal communication resource utilization. In the case that network is not

saturated, the BE and GT messages can share fairly the used communication chan-

nels in the NoC. A soft guaranteed-service is given to the GT-type messages. Hence,

the GT-type messages will not interrupt the flow of the BE-type messages.

8.2 Directions for Future Works

On-chip networks are communication infrastructure dedicated for on-chip multiproces-

sor systems. The performance of an on-chip interconnection networks affects the perfor-

mance of the networked multiprocessor systems because communication overheads due

to task-level parallelism affecting the total computational time of a complex parallel com-

puting. Therefore, a high performance network-on-chip should be a general requirement

to develop a networked multiprocessor system in the future.

In accordance with the current status of the research results presented in this thesis,

further investigations to improve the flexibility, to increase performance, to reduce power

dissipation and to optimize the logic area of the proposed NoC router microarchitecture

will be still open. Some potential improvements that can be made for the future investi-

gations are described in the following points.

1. In the current XHiNoC implementationwith combined BE andGT services, a virtual

channel with two FIFO buffers per input port has been implemented. Further inves-

tigation can be made by replacing the virtual channel with a smart FIFO buffer hav-

ing the same functionality with the virtual channel. This component replacement

will help to reduce the area overhead of the NoC router due to the double-FIFO

buffer implementation at the NoC input ports. The FIFO buffer will be equipped

with smart algorithm to organized the contents of its registers. When the queue

registers contain the GT-type and BE-type messages, the smart FIFO buffers will

always firstly route the GT-type messages in order until there is no more GT-type

message. In order to avoid a blocking situation for the GT-type messages, a BE-type

flit will not be let to enter the FIFO buffer if the buffer is almost full (There is only

one free space in the FIFO buffer).

2. The contention- and bandwidth-aware adaptive routing selection strategy imple-

mented in the current XHiNoC microarchitecture has not covered the problem of

NoC faults (Fault-Tolerance Routing algorithm). In the future, it is also interest-

ing if the routing adaptivity is provided not only to avoid congestion situation, but

also to handle a situation, where some post-chip-fabricated faults are found in some

NoC router nodes and/or in NoC communication links.
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3. Another challenging issue in the NoC area is the stacked 3D integration of NoC-

based multiprocessor systems. The 3D integration can potentially increase the com-

munication scalability and reduce network hops in massively parallel multiproces-

sor systems. Memory components can be potentially located near to the parallel

processor cores on one or more stack layers. However, since the technology is not

yet mature, there are still many research efforts to undertake, including supports

from standard CAD tools.

Beside the aforementioned potential improvement in accordance with the current VLSI

microarchitecture and the NoC services implementation results, there are still also some

interesting topics to investigate, which are beyond the scope of this current work. The

research about networks-on-chip topics has a strong relationship with researches in fields

of multiprocessor systems and parallel computing systems. The directions of the future

works related to the development of the XHiNoC router prototypes in line with the NoC-

based multiprocessor systems realization are described in the following.

1. Network Interface (NI) is an important component to couple a NoC with a process-

ing element (PE) core. This component is used as adapter to enable data transport

and communication between the NoC routers and the PE cores. Therefore, the NI

should be compatible with the NoC router and the PE core by separating the NI

into two parts, i.e. a PE-independent module and a NoC-independent module.

Since the architecture, packet format and IO signaling of a certain NoC router is

specific compared with other NoCs, then the challenge to design a flexible NI with

less design-effort is an interesting topic in the future.

2. A multicore chip integrates the switch cores to build a NoC communication infras-

tructure, NI cores together with other IP components or CPU/DSP/GPU (Graphics

Processing unit) cores. The multicore chip fabrication will certainly be the most

interesting work. After the chip manufacturing process, a cost-effective testing

methodology for NoC-based multiprocessor systems will then be the next chal-

lenging research topic. Significant problems that could be challenging issue in the

submicron interconnection circuits are e.g. crosstalk faults and single-event upsets

(SEUs). The time and energy efficient test strategy to cover fabrication errors in

the very complex NoC-based multiprocessor systems will be an interesting research

field in the future.

3. Finally, efficient parallel programming models suitable for embedded MPSoCs and

for chip-level multiprocessor (CMP) systems will be a key factor to the successfull

of the NoC-based multiprocessor system release in markets. An easy-to-program

NoC-based multicore system will be a very interesting feature for end-users which

may have a limited knowledge about parallel programming method. For many

years, there have been some parallel programming models used to develop paral-

lel computers in high performance computing (HPC) area. The system platforms
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can be called “on-rack” (off-chip) multiprocessor systems. Nevertheless, only a few

people are familiar with the programming models, except for programmers who

work in parallel computing societies. Ideally we really need to develop a parallel

program compiler, which automatically parallelizes the implicitly-described paral-

lel tasks from a sequential program to create multiple concurrent executable codes.

It is really very hard to develop, but it is not impossible that one day such compiler

can be found in the future.
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and M. LUBASZEWSKI. “Testing Network-on-Chip Communication Fabrics”. IEEE Trans.

Computers, 57(9):1202–1215, Sep. 2008.

[56] W. J. DALLY. “Performance Analysis of k-ary n-cube Interconnection Networks”. IEEE

Trans. Computers, C-39(6):775–785, June 1990.

[57] W. J. DALLY and C. L. SEITZ. “The Torus Routing Chip”. Journal of Distributed Computing,

1(3):187–196, Oct. 1986.

[58] W. J. DALLY and C. L. SEITZ. “Deadlock-Free Message Routing in Multiprocessor Intercon-

nection Networks”. IEEE Trans. Computers, C-36(5):547–553, May 1987.

[59] W. J. DALLY and B. TOWLES. “Route Packets, Not Wires: On-Chip Interconnection Net-

works”. In The 38th ACM Design Automation Conf., pages 684–689, 2001.

[60] B. V. DAO, J. DUATO, and S. YALAMANCHILI. “Configurable Flow Control Mechanisms for

Fault-Tolerant Routing”. In Proc. the 22nd International Symposium on Computer Architecture

(ISCA’95), pages 220–229, June 1995.

[61] R. F. DEMARA and D. . MOLDOVAN. “Performance Indices for Parallel Marker-Propagation”.

In Proc. Int’l Conf. Parallel Processing, volume 1, pages 658–659, Aug. 1991.

[62] J. DUATO. “A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks”.

IEEE Trans. Parallel and Distributed Systems, 4(12):1320–1331, Dec. 1993.

[63] J. DUATO. “A Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole Net-

works”. IEEE Trans. Parallel and Distributed Systems, 6(9):976–987, Sep. 1995.

[64] J. DUATO, B. V. DAO, P. T. GAUGHAN, and S. YALAMANCHILI. “Scouting: Fully Adaptive

Deadlock-free Routing in Faulty Pipelined Networks”. In Proc. the International Conference

on Parallel and Distributed Systems, pages 608–613, Dec. 1994.

[65] J. DUATO, S. YALAMANCHILI, and L. NI. Interconnection Networks: An Engineering Approach.

Revised Printing. Murgan Kaufmann, 2003.

[66] T. H. DUNIGAN, J. S. VETTER, J. B. W. III, and P. H. WORLEY. “Performance Evaluation of The

Cray X1 Distributed Shared-Memory Architecture”. IEEE Micro, 25(1):30–40, Jan-Feb. 2005.



REFERENCES 225

[67] J. S. K. (ED.). Parallel MIMD Computation: HEP Supercomputer and Its Applications. MIT Press,

Cambridge, MA, 1985.

[68] A. EJLALI, B. M. AL-HASHIMI, P. ROSINGER, S. G. MIREMADI, and L. BENINI. “Performabil-

ity/Energy Tradeoff in Error-Control Schemes for On-Chip Networks”. IEEE Trans. Very

Large Scale Integration (VLSI) Systems, 18(1):1–14, Jan. 2010.
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