
64 Verilog Digital Computer Design: Algorithms into Hardware

3. VERILOG HARDWARE
 DESCRIPTION
 LANGUAGE

The previous chapter describes how a designer may manually use ASM charts (to de-
scribe behavior) and block diagrams (to describe structure) in top-down hardware de-
sign. The previous chapter also describes how a designer may think hierarchically,
where one module’s internal structure is defined in terms of the instantiation of other
modules. This chapter explains how a designer can express all of these ideas in a spe-
cial hardware description language known as Verilog. It also explains how Verilog can
test whether the design meets certain specifications.

3.1 Simulation versus synthesis
Although the techniques given in chapter 2 work wonderfully to design small machines
by hand, for larger designs it is desirable to automate much of this process. To automate
hardware design requires a Hardware Description Language (HDL), a different nota-
tion than what we used in chapter 2 which is suitable for processing on a general-
purpose computer. There are two major kinds of HDL processing that can occur: simu-
lation and synthesis.

Simulation is the interpretation of the HDL statements for the purpose of producing
human readable output, such as a timing diagram, that predicts approximately how the
hardware will behave before it is actually fabricated. As such, HDL simulation is quite
similar to running a program in a conventional high-level language, such as Java Script,
LISP or BASIC, that is interpreted. Simulation is useful to a designer because it allows
detection of functional errors in a design without having to fabricate the actual hard-
ware. When a designer catches an error with simulation, the error can be corrected with
a few keystrokes. If the error is not caught until the hardware is fabricated, correcting
the problem is much more costly and complicated.

Synthesis is the compilation of high-level behavioral and structural HDL statements
into a flattened gate-level netlist, which then can be used directly either to lay out a
printed circuit board, to fabricate a custom integrated circuit or to program a program-
mable logic device (such as a ROM, PLA, PLD, FPGA, CPLD, etc.). As such, synthe-
sis is quite similar to compiling a program in a conventional high-level language, such
as C. The difference is that, instead of producing object code that runs on the same
computer, synthesis produces a physical piece of hardware that implements the compu-
tation described by the HDL code. For the designer, producing the netlist is a simple

65Verilog Hardware Description Language

step (typically done with only a few keystrokes), but turning the netlist into physical
hardware is often costly, especially when the goal is to obtain a custom integrated
circuit from a commercial silicon foundry. Typically after synthesis, but before the
physical fabrication, the designer simulates the synthesized netlist to see if its behavior
matches the original HDL description. Such post-synthesis simulation can prevent costly
errors.

3.2 Verilog versus VHDL
HDLs are textual, rather than graphic, ways to describe the various stages in the top-
down design process. In the same language, HDLs allow the designer to express both
the behavioral and structural aspects of each stage in the design. The behavioral fea-
tures of HDLs are quite similar to conventional high-level languages. The features that
make an HDL unique are those structural constructs that allow description of the
instantiation and interconnection of modules.

There are many proprietary HDLs in use today, but there are only two standardized and
widely used HDLs: Verilog and VHDL. Verilog began as a proprietary HDL promoted
by a company called Cadence Data Systems, Inc., but Cadence transferred control of
Verilog to a consortium of companies and universities known as Open Verilog Interna-
tional (OVI). Many companies now produce tools that work with standard Verilog.
Verilog is easy to learn. It has a syntax reminiscent of C (with some Pascal syntax
thrown in for flavor). About half of commercial HDL work in the U.S. is done in Verilog.
If you want to work as a digital hardware designer, it is important to know Verilog.

VHDL is a Department of Defense (DOD) mandated language that is used primarily by
defense contractors. Although most of the concepts in VHDL are not different from
those in Verilog, VHDL is much harder to learn. It has a rigid and unforgiving syntax
strongly influenced by Ada (which is an unpopular conventional programming lan-
guage that the DOD mandated defense software contractors to use for many years be-
fore VHDL was developed). Although more academic papers are published about VHDL
than Verilog, less than one-half of commercial HDL work in the U.S. is done in VHDL.
VHDL is more popular in Europe than it is in the U.S.

3.3 Role of test code
The original purpose of Verilog (and VHDL) was to provide designers a unified lan-
guage for simulating gate-level netlists. Therefore, Verilog combines a structural nota-
tion for describing netlists with a behavioral notation for saying how to test such netlists
during simulation. The behavioral notation in Verilog looks very much like normal
executable statements in a procedural programming language, such as Pascal or C. The
original reason for using such statements in Verilog code was to provide stimulus to the

66 Verilog Digital Computer Design: Algorithms into Hardware

netlist, and to test the subsequent response of the netlist. The pairs of stimulus and
response are known as test vectors. The Verilgo that creates the stimulus and observes
the response is known as the test code or testbench. Snoopy's "woof" in the comic strip
of section 2.2 is analougus to the role of the test codes warning us that the expected
response was not observed. For example, one way to use simulation to test whether a
small machine works is to do an exhaustive test, where the test code provides each
possible combination of inputs to the netlist and then checks the response of the netlist
to see if it is appropriate.

For example, consider the division machine of the last chapter. Assume we have devel-
oped a flattened netlist that implements the complete machine. It would not be at all
obvious whether this netlist is correct. Since the bus width specified in this problem is
small (twelve bits), we can write Verilog test code using procedural Verilog (similar to
statements in C) that does an exhaustive test. A reasonable approach would be to use
two nested loops, one that varies x through all its 4096 possible values, and one that
varies y through all its 4095 possible values. At appropriate times inside the inner loop,
the test code would check (using an if statement) whether the output of the netlist
matches x/y. Verilog provides most of the integer and logical operations found in C,
including those, such as division, that are difficult to implement in hardware. The origi-
nal intent was not to synthesize such code into hardware but to document how the
netlist should automatically be tested during simulation.

Verilog has all of the features you need to write conventional high-level language pro-
grams. Except for file Input/Output (I/O), any program that you could write in a con-
ventional high- level language can also be written in Verilog. The original reason Verilog
provides all this software power in a “hardware” language is because it is impossible to
do an exhaustive test of a complex netlist. The 12-bit division machine can be tested
exhaustively because there are only 16,773,120 combinations with the 24 bits of input
to the netlist. A well-optimized version of Verilog might be able to conduct such a
simulation in a few days or weeks. If the bus width were increased, say to 32-bits, the
time to simulate all 264 combinations would be millions of years. Rather than give up
on testing, designers write more clever test code. The test code will appear longer, but
will execute in much less time. Of course, if a machine has a flaw that expresses itself
for only a few of the 264 test patterns, the probability that our fast test code will find the
flaw is usually low.

3.4 Behavioral features of Verilog
Verilog is composed of modules (which play an important role in the structural aspects
of the language, as will be described in section 3.10). All the definitions and declara-
tions in Verilog occur inside a module.

67Verilog Hardware Description Language

3.4.1 Variable declaration
At the start of a module, one may declare variables to be integer or to be real .
Such variables act just like the software declarations int and float in C. Here is an
example of the syntax:

 integer x,y;
 real Rain_fall;

Underbars are permitted in Verilog identifiers. Verilog is case sensitive, and so
Rain_fall and rain_fall are distinct variables. The declarations integer and
real are intended only for use in test code. Verilog provides other data types, such as
reg and wire , used in the actual description of hardware. The difference between
these two hardware-oriented declarations primarily has to do with whether the variable
is given its value by behavioral (reg) or structural (wire) Verilog code. Both of these
declarations are treated like unsigned in C. By default, reg s and wire s are only
one bit wide. To specify a wider reg or wire , the left and right bit positions are
defined in square brackets, separated by a colon. For example:

reg [3:0] nibble,four_bits;

declares two variables, each of which can contain numbers between 0 and 15. The most
significant bit of nibble is declared to be nibble[3] , and the least significant bit is
declared to be nibble[0] . This approach is known as little endian notation. Verilog
also supports the opposite approach, known as big endian notation:

reg [0:3] big_end_nibble;

where now big_end_nibble[3] is the least significant bit.

If you store a signed value1 in a reg , the bits are treated as though they are unsigned.
For example, the following:

four_bits = -5;

is the same as:

four_bits = 11;

1 In order to simplify dealing with twos complement values, many implementations allow integers with an
arbitrary width. Such declarations are like reg s, except they are signed.

68 Verilog Digital Computer Design: Algorithms into Hardware

Verilog supports concatenation of bits to form a wider wire or reg , for example,
{nibble[2], nibble[1]} is a two bit reg composed of the middle two bits of
nibble . Verilog also provides a shorthand for obtaining a contiguous set of bits taken
from a single reg or wire . For example, the middle two bits of nibble can also be
specified as nibble[2:1] . It is legal to assign values using either of these notations.

Verilog also allows arrays to be defined. For example, an array of reals could be defined
as:

real monthly_precip[11:0];

Each of the twelve elements of the array (from monthly_precip[0] to
monthly_precip[11]) is a unique real number. Verilog also allows arrays of wire s
and reg s to be defined. For example,

reg [3:0] reg_arr[999:0];
wire[3:0] wir_arr[999:0];

Here, reg_arr[0] is a four-bit variable that can be assigned any number between 0
and 15 by behavioral code, but wir_arr[0] is a four-bit value that cannot be as-
signed its value from behavioral code. There are one thousand elements, each four bits
wide, in each of these two arrays. Although the [] means bit select for scalar values,
such as nibble[3], the [] means element select with arrays. It is illegal to com-
bine these two uses of [] into one, as in if(reg_arr[0][3]) . To accomplish this
operation requires two statements:

nibble = reg_arr[0];
if (nibble[3]) ...

3.4.2 Statements legal in behavioral Verilog
The behavioral statements of Verilog include2 the following:

 var = expression ;

 if (condition)
 statement

2 There are other, more advanced statements that are legal. Some of these are described in chapters 6
and 7.

69Verilog Hardware Description Language

 if (condition)
 statement
 else
 statement

 while (condition)
 statement

 for (var=expression ; condition ; var=var +expression)
 statement

 forever
 statement

 case (expression)
 constant : statement
 ...
 default: statement
 endcase

where the italic statement , var , expression , condition and constant are
replaced with appropriate Verilog syntax for those parts of the language. A state-
ment is one of the above statements or a series of the above statements terminated by
semicolons inside begin and end . A var is a variable declared as integer,
real , reg or a concatenation of reg s. A var cannot be declared as wire .

3.4.3 Expressions
An expression involves constants and variables (including wire s) with arithmetic
(+ , - , * , / , %), logical (& , & & , | , | | , ^ , ~ , < < , > >), relational
(<,==,===,<=,>=,!=,!==,>) and conditional (?:) operators. A condition
is an expression. A condition might be an expression involving a single bit, (as
would be produced by ||, &&, !, <, ==, ===, <=, >=, !=, !== or >)
or an expression involving several bits that is checked by Verilog to see if it is equal to
1. Except for === and !== , these symbols have the same meaning as in C. Assuming
the result is stored in a 16-bit reg ,3 the following table illustrates the result of these
operators, for example where the left operand (if present) is ten and the right operand is
three:

Continued

3 Some results are different if the destination is declared differently.

70 Verilog Digital Computer Design: Algorithms into Hardware

symbol name example 16-bit
unsigned
result

+ addition 10+3 13
- subtraction 10-3 7
- negation -10 65526
* multiplication 10*3 30
/ division 10/3 3
% remainder 10%3 1

<< shift left 10<<3 80
>> shift right 10>>3 1
& bitwise AND 10&3 2
| bitwise OR 10|3 11
^ bitwise exclusive OR 10^3 9
~ bitwise NOT ~10 65525

?: conditional operator 0?10:3 3
1?10:3 10

! logical NOT !10 0
&& logical AND 10&&3 1
|| logical OR 10||3 1
< less than 10<3 0

== equal to 10==30
<= less than or equal to 10<=3 0
>= greater than or equal 10>=3 1
!= not equal 10!=3 1
> greater than 10>3 1

3.4.4 Blocks
All procedural statements occur in what are called blocks that are defined inside mod-
ules, after the type declarations. There are two kinds of procedural blocks: the
initial block and the always block. For the moment, let us consider only the
initial block. An initial block is like conventional software. It starts execution
and eventually (assuming there is not an infinite loop inside the initial block) it
stops execution. The simplest form for a single Verilog initial block is:

71Verilog Hardware Description Language

 module top;

 declarations ;

 initial
 begin
 statement ;
 ...
 statement ;
 end

 endmodule

The name of the module (top in this case) is arbitrary. The syntax of the
declarations is as described above. All variables should be declared. Each state-
ment is terminated with a semicolon. Verilog uses the Pascal-like begin and end,
rather than { and }. There is no semicolon after begin or end . The begin and end
may be omitted in the rare case that only one procedural statement occurs in the ini-
tial block.

Here is an example that prints out all 16,773,120 combinations of values described in
section 3.3:

 module top;
 integer x,y;
 initial
 begin
 x = 0;
 while (x<=4095)
 begin
 for (y=1; y<=4095; y = y+1)
 begin
 $display("x=%d y=%d",x,y);
 end
 x = x + 1;
 end
 end
 $write("all ");
 $display("done");
 endmodule

The loop involving x could have been written as a for loop also but was shown above
as a while for illustration. Note that Verilog does not have the ++ found in C, and so
it is necessary to say something like y = y + 1 . This assignment statement is just like

72 Verilog Digital Computer Design: Algorithms into Hardware

its counterpart in C: it is instantaneous. The variable changes value before the next
statement executes (unlike the RTN discussed in the previous chapter). The $dis-
play is a system task (which begin with $) that does something similar to what
printf("%d %d \n",x,y) does in C: it formats the textual output according to
the string in the quotes. The system task $write does the same thing as $display ,
except that it does not produce a new line:

x= 0 y= 1
x= 0 y= 2

x= 4095 y= 4094
x= 4095 y= 4095
all done

The above code would fail if the declaration had been:

reg [11:0] x,y;

because, although twelve bits are adequate for the hardware, the test code requires that
x and y become 4096 in order for the loop to stop.

Since infinite loops are useful in hardware, Verilog provides the syntax forever ,
which means the same thing as while(1) . In addition, the always block mentioned
above can be described as an initial block containing only a forever loop. For
simulation purposes, the following mean the same:

 initial initial
 begin begin
 while(1) forever always
 begin begin begin

 end end end
 end end

For synthesis, one should use the always block form only. The statement forever
is not a block and cannot stand by itself. Like other procedural statements, forever
must be inside an initial or always block.

73Verilog Hardware Description Language

3.4.5 Constants
By default, constants in Verilog are assumed to be decimal integers. They may be speci-
fied explicitly in binary, octal, decimal, or hexadecimal by prefacing them with the
syntax ’b, ’o, ’d, or ’h , respectively. For example, ’b1101, ’o15, ’d13,
’hd, and 13 all mean the same thing. If you wish to specify the number of bits in the
representation, this proceeds the quote: 4’b1101, 4’o15, 4’d13, 4’hd .

3.4.6 Macros, include files and comments
As an aid to readability of the code, Verilog provides a way to define macros. For
example, the aluctrl codes described in 2.3.1 can be defined with:

‘define DIFFERENCE 6’b011001
‘define PASSB 6’b101010

Later in the code, a reference to these macros (preceded by a backquote) is the same as
substituting the associated value. The following if s mean the same:

 if (aluctrl == ‘DIFFERENCE) if (aluctrl == 6’b011001)
 $display("subtracting"); $display("subtracting");

Note the syntax difference between variables (such as aluctrl), macros (such as
‘DIFFERENCE), and constants (such as 6’b011001). Variables are not preceded by
anything. Macros are preceded by backquote. Constants may include one forward single
quote.

You can determine whether a macro is defined using ‘ifdef and ‘endif. This
preprocessing feature should not be confused with if . For example, the following:

‘ifdef DIFFERENCE
 $display("defined");
‘endif

prints the message regardless of the value of ‘DIFFERENCE, as long as that macro is
defined. The message is not printed only when there is not a ‘define for
‘DIFFERENCE.

Verilog allows you to separate your source code into more than one file (just like #in-
clude in C and {$I} in Pascal). To use code contained in another file, you say:

‘include "filename.v"

74 Verilog Digital Computer Design: Algorithms into Hardware

There are two forms of comments in Verilog, which are the same as the two forms
found in C++. A comment that extends only for the rest of the current line can occur
after // . A comment that extends for several lines begins with /* and ends with */ .
For example:

 /* a multi line comment
 that includes a declaration:
 reg a;
 which is ignored by Verilog
 */
 reg b; // this declaration is not ignored

3.5 Structural features of Verilog
Verilog provides a rich set of built-in logic gates, including and, or, xor, nand,
nor, not and buf , that are used to describe a netlist. The syntax for these structural
features of Verilog is quite different than for any of the behavioral features of Verilog
mentioned earlier. The outputs of such gates are declared to be wire , which by itself
describes a one-bit data type. (Regardless of width, an output generated by structural
Verilog code must be declared as a wire .) The inputs to such gates may be either
declared as wire or reg (depending on whether the inputs are themselves computed
by structural or behavioral code). To instantiate such a gate, you say what kind of gate
you want (xor for example) and the name of this particular instance (since there may
be several instances of xor gates, let’s name this example x1). Following the instance
name, inside parentheses are the output and input ports of the gate (for example, say the
output is a wire named c , and the inputs are a and b). The output(s) of gates are
always on the left inside the parentheses:

module easy_xor;
 reg a,b;
 wire c;
 xor x1(c,a,b);
 ...
endmodule

People familiar with procedural programming languages, like C, mistakenly assume
this is “passing c, a and b and then calling on xor. ” It is doing no such thing. It
simply says that an xor gate named x1 has its output connected to c and its inputs
connected to a and b. If you are familiar with graph theory, this notation is simply a
way to describe the edges (a,b,c) and vertex (x1) of a graph that represents the
structure of a circuit.

75Verilog Hardware Description Language

3.5.1 Instantiating multiple gates
Of course, there is an equivalent structure of and/or gates that does the same thing as
an xor gate (recall the identity a^b == a&(~b)|(~a)&b):

module hard_xor;
 reg a,b;
 wire c;
 wire t1,t2,not_a,not_b;

 not i1(not_a,a);
 not i2(not_b,b);
 and a1(t1,not_a,b);
 and a2(t2,a,not_b);
 or o1(c,t1,t2);
 ...
endmodule

The order in which gates are instantiated in structural Verilog code does not matter, and
so the following:

module scrambled_xor;
 reg a,b;
 wire c;
 wire t1,t2,not_a,not_b;

 or o1(c,t1,t2);
 and a1(t1,not_a,b);
 and a2(t2,a,not_b);
 not i1(not_a,a);
 not i2(not_b,b);
 ...
endmodule

means the same thing, because they both represent the interconnection in the following
circuit diagram:

Figure 3-1. Exclusive or built with ANDs, OR and inverters.

a i1

i2

b

not_a

not_b

t1

t2

ca1

a2

o1

76 Verilog Digital Computer Design: Algorithms into Hardware

3.5.2 Comparison with behavioral code
Structural Verilog code does not describe the order in which computations implemented
by such a structure are carried out by the Verilog simulator. This is in sharp contrast to
behavioral Verilog code, such as the following:

module behavioral_xor;

 reg a,b;
 reg c;
 reg t1,t2,not_a,not_b;

 always ...
begin
 not_a = ~a;
 not_b = ~b;
 t1 = not_a&b;
 t2 = a¬_b;
 c = t1|t2;
end

endmodule

which is a correct behavioral rendition of the same idea. (The ellipses must be replaced
by a Verilog feature described later.) Also, c, t1, t2, not_a and not_b must
be declared as reg s because this behavioral (rather than structural) code assigns val-
ues to them.

To rearrange the order of behavioral assignment statements is incorrect:

module bad_xor;

 reg a,b;
 reg c;
 reg t1,t2,not_a,not_b;

 always ...
 begin
 c = t1|t2;
 t1 = not_a&b;
 t2 = a¬_b;
 not_a = ~a;
 not_b = ~b;
 end
endmodule

because not_a must be computed before t1 by the Verilog simulator.

77Verilog Hardware Description Language

3.5.3 Interconnection errors: four-valued logic
In software, a bit is either a 0 or a 1. In properly functioning hardware, this is usually
the case also, but it is possible for gates to be wired together incorrectly in ways that
produce electronic signals that are neither 0 nor 1. To more accurately model such
physical possibilities,4 each bit in Verilog can be one of four things: 1’b0, 1’b1,
1’bz or 1’bx .

Obviously, 1’b0 and 1’b1 correspond to the logical 0 and logical 1 that we would
normally expect to find in a computer. For most technologies, these two possibilities
are represented by a voltage on a wire. For example, active high TTL logic would
represent 1’b0 as zero volts and 1’b1 as five volts. Active low TTL logic would
represent 1’b0 as five volts and 1’b1 as zero volts. Other kinds of logic families,
such as CMOS, use different voltages. ECL logic uses current, rather than voltage, to
represent information, but the concept is the same.

3.5.3.1 High impedance
In any technology, it is possible for gates to be miswired. One kind of problem is when
a designer forgets to connect a wire or forgets to instantiate a necessary gate. This
means that there is a wire in the system which is not connected to anything. We refer to
this as high impedance, which in Verilog notation is 1’bz . The TTL logic family will
normally view high impedance as being the same as five volts. If the input of a gate to
which this wire is connected is active high, 1’bz will be treated as 1’b1 , but if it is
active low, it will be treated as 1’b0 . Other logic families treat 1’bz differently. Fur-
thermore, electrical noise may cause 1’bz to be treated spuriously in any logic family.
For these reasons, it is important for a Verilog simulator to treat 1’bz as distinct from
1’b0 and 1’b1 . For example, if the designer forgets the final or gate in the example
from section 3.5.1:

module forget_or_that_outputs_c;
 reg a,b;
 wire c;
 wire t1,t2,not_a,not_b;

 not i1(not_a,a);
 not i2(not_b,b);
 and a1(t1,not_a,b);
 and a2(t2,a,not_b);
 ...
endmodule

4 Verilog also allows each bit to have a strength, which is an electronic concept (below gate level) beyond the
scope of this book.

78 Verilog Digital Computer Design: Algorithms into Hardware

there is no gate that outputs the wire c , and therefore it remains 1’bz , regardless of
what a and b are.

3.5.3.2 Unknown value
Another way in which gates can be miswired is when the output of two gates are wired
together. This raises the possibility of fighting outputs, where one of the gates wants to
output a 1’b0, but the other wants to output a 1’b1 . For example, if we tried to
eliminate the or gate by tying the output of both and gates together:

module tie_ands_together;
 reg a,b;
 wire c;
 wire t1,t2,not_a,not_b;

 not i1(not_a,a);
 not i2(not_b,b);
 and a1(c,not_a,b);
 and a2(c,a,not_b);
 ...
endmodule

the result is correct (1’b0) when a and b are the same because the two and gates both
produce 1’b0 and there is no fight. The result is incorrect (1’bx) when a is 1’b0 and
b is 1’b1 or vice versa, because the two and gates fight each other. Fighting gates can
cause physical damage to certain families of logic (i.e., smoke comes out of the chip).
Obviously, we want to be able to have the simulator catch such problems before we
fabricate a chip that is doomed to blow up (literally)!

3.5.3.3 Use in behavioral code
Behavioral code may manipulate bits with the four-valued logic. Uninitialized reg s in
behavioral code start with a value of ’bx . (As mentioned above for structural code,
disconnected wire s start with a value of ’bz .) All the Boolean operators, such as &,
| and ~ are defined with the four-valued logic so that the usual rules of commutativity,
associativity, etc. apply.

The four-valued logic may be used with multi-bit wire s and reg s. When all the bits
are either 1’b1 or 1’b0 , such as 3’b110 , the usual binary interpretation (powers of
two) applies. When any of the bits is either 1’bz or 1’bx , such as 3’b1z0 , the
numeric value is unknown.

79Verilog Hardware Description Language

Arithmetic and relational operators (including == and !=) produce their usual results
only when both operands are composed of 1’b0 s and 1’b1 s. In any other case, the
result is ’bx . This relates to the fact the corresponding combinational logic required to
implement such operations in hardware would not produce a reliable result under such
circumstances. For example:

if (a == 1’bx)
 $display("a is unknown");

will never display the message, even when a is 1’bx , because the result of the ==
operation is always 1’bx . 1’bx is not the same as 1’b1 , and so the $display
never executes.

There are two special comparison operators (=== and !==) that overcome this limita-
tion. === and !== cannot be implemented in hardware, but they are useful in writing
intelligent simulations. For example:

if (a === 1’bx)
 $display("a is unknown");

will display the message if and only if a is 1’bx .

To help understand the last examples, you should realize that the following two if
statements are equivalent:

 if(expression) if((expression)===1’b1)
 statement; statement;

The following table summarizes how the four-valued logic works with common opera-
tors:

80 Verilog Digital Computer Design: Algorithms into Hardware

This table was generated by the following Verilog code:

module xz01;
 reg a,b,val[3:0];
 integer ia,ib;

 initial
 begin
 val[0] = 1’b0;
 val[1] = 1’b1;
 val[2] = 1’bx;
 val[3] = 1’bz;
 $display

 ("a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b");

 for (ia = 0; ia<=3; ia=ia+1)
 for (ib = 0; ib<=3; ib=ib+1)
 begin
 a = val[ia];
 b = val[ib];

 $display
("%b %b %b %b %b %b %b %b %b %b %b ",

 a,b,a==b,a===b,a!=b,a!==b,a&b,a&&b,a|b,a||b,a^b);
 end
 end
endmodule

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b

0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 1 1 1
0 x x 0 x 1 0 0 x x x
0 z x 0 x 1 0 0 x x x
1 0 0 0 1 1 0 0 1 1 1
1 1 1 1 0 0 1 1 1 1 0
1 x x 0 x 1 x x 1 1 x
1 z x 0 x 1 x x 1 1 x
x 0 x 0 x 1 0 0 x x x
x 1 x 0 x 1 x x 1 1 x
x x x 1 x 0 x x x x x
x z x 0 x 1 x x x x x
z 0 x 0 x 1 0 0 x x x
z 1 x 0 x 1 x x 1 1 x
z x x 0 x 1 x x x x x
z z x 1 x 0 x x x x x

81Verilog Hardware Description Language

3.6 $time
A Verilog simulator executes as a software program on a conventional general-purpose
computer. How long it takes such a computer to run a Verilog simulation, known as real
time, depends on several factors, such as how fast the general-purpose computer is, and
how efficient the simulator is. The speed with which the designer obtains the simula-
tion results has little to do with how fast the eventual hardware will be when it is fabri-
cated. Therefore, the real time required for simulation is not important in the following
discussion.

Instead, Verilog provides a built-in variable, $time , which represents simulated time,
that is, a simulation of the actual time required for a machine to operate when it is
fabricated. Although the value of $time in simulation has a direct relationship to the
physical time in the fabricated hardware, $time is not measured in seconds. Rather,
$time is a unitless integer. Often designers map one of these units into one nanosec-
ond, but this is arbitrary.

3.6.1 Multiple blocks
Verilog allows more than one behavioral block in a module. For example:

module two_blocks;
 integer x,y;

 initial
 begin
 a=1;
 $display("a is one");
 end

 initial
 begin
 b=2;
 $display("b is two");
 end
endmodule

The above simulates a system in which a and b are simultaneously assigned their
respective values. This means, from a simulation standpoint, $time is the same when
a is assigned one as when b is assigned two. (Since both assignments occur in ini-
tial blocks, $time is 0.) Note that this does not imply the sequence in which these
assignments (or the corresponding $display statements) occur.

82 Verilog Digital Computer Design: Algorithms into Hardware

3.6.2 Sequence versus $time
In software, we often confuse the two separate concepts of time and sequence. In Verilog,
it is possible for many statements to execute without $time advancing. The sequence
in which statements within one block execute is determined by the usual rules found in
other high-level languages. The sequence in which statements within different blocks
execute is something the designer cannot predict, but that Verilog will do consistently.
The advancing of $time is a different issue, discussed in section 3.7.

If you change the wire s to be reg s, a structural Verilog netlist is equivalent to several
always blocks, where each always block computes the result output by one gate. If
the design is correct, the sequence in which such always blocks execute at a particu-
lar $time is irrelevant, which helps explain why the order in which you instantiate
gates in structural Verilog is also irrelevant. With Verilog, you can simulate the parallel
actions of each gate or module that you instantiate, as well as the parallel actions of
each behavioral block you code.

3.6.3 Scheduling processes and deadlock
Like a multiprocessing operating system, a Verilog simulator schedules several pro-
cesses, one for each structural component or behavioral block. The $time variable
does not advance until the simulator has given each process that so desires an opportu-
nity to execute at that $time .

If you are familiar with operating systems concepts, such as semaphores, you will
recognize that this raises a question about how Verilog operates: what are the atomic
units of computation, or in other words, when does a process get interrupted by the
Verilog simulator?

The behavioral statements described earlier are uninterruptible. Although it is nearly
correct to model an exclusive OR with the following behavioral code:

module deadlock_the_simulator;
 reg a,b,c;
 always
 c = a^b;
 ... other blocks ...
endmodule

the Verilog simulator would never allow the other blocks to execute because the block
computing c is not interruptible. Overcoming this problem requires an additional fea-
ture of Verilog, discussed in the next section.

83Verilog Hardware Description Language

3.7 Time control
Behavioral Verilog may include time control statements, whose purpose is to release
control back to the Verilog scheduler so that other processes may execute and also tell
the Verilog simulator at what $time the current process would like to be restarted.
There are three forms of time control that have different ways of telling the simulator
when to restart the current process: #, @ and wait .

3.7.1 # time control
When a statement is preceded by # followed by a number, the scheduler will not ex-
ecute the statement until the specified number of $time units have passed. Any other
process that desires to execute earlier than the $time specified by the # will execute
before the current process resumes. If we modify the first example from section 3.6:

module two_blocks_time_control;
 integer x,y;

 initial
 begin
 #4
 a=1;
 $display("a is one at $time=%d",$time);
 end

 initial
 begin
 #3
 b=2;
 $display("b is two at $time=%d",$time);
 end

endmodule

 the above will assign first to b (at $time =3) and then to a one unit of $time later.
The order in which these statements execute is unambiguous because the # places them
at a certain point in $time .

There can be more than one # in a block. The following nonsense module illustrates
how the # works:

84 Verilog Digital Computer Design: Algorithms into Hardware

In the above code, a becomes 10 at $time 0, 40 at $time 1, 20 at $time 2, 50 at
$time 4, 30 at $time 7 and 60 at $time 8. The interaction of parallel blocks creates
a behavior much more complex than that of each individual block.

3.7.1.1 Using # in test code
One of the most important uses of # is to generate sequences of patterns at specific
$time s in test code to act as inputs to a machine. The # releases control from the test
code and gives the code that simulates the machine an opportunity to execute. Test
code without some kind of time control would be pointless because the machine being
tested would never execute.

For example, suppose we would like to test the built-in xor gate by stimulating it with
all four combinations on its inputs, and printing the observed truth table:

module confusing;
 integer a;

 initial
 begin
 a = 10;
 #2 a = 20;
 #5 a = 30;
 end

 initial
 begin
 #1 a = 40;
 #3 a = 50;
 #4 a = 60;
 end
endmodule

85Verilog Hardware Description Language

The first time through, a and b are initialized to be 0 at $time 0. When #10 executes
at $time 0, the initial block relinquishes control, and x1 is given the opportunity
to compute a new value (0^0=0) on the wire c . Having completed everything sched-
uled at $time 0, the simulator advances $time . The next thing scheduled to execute
is the $display statement at $time 10. (The simulator does not waste real time
computing anything for $time 2 through 9 since nothing changes during this $time .)
The simulator prints out that “a=0 b=0 c=0 ” at $time 10 and then goes through the
inner loop once again. While $time is still 10, b becomes 1. The #10 relinquishes
control, x1 computes that c is now 1 and $time advances. The $display prints out
that “a=0 b=1 c=1 ” at $time 20. The last two lines of the truth table are printed out
in a similar fashion at $time s 30 and 40.

3.7.1.2 Modeling combinational logic with #
Physical combinational logic devices, such as the exclusive OR gate, have propagation
delay. This means that a change in the input does not instantaneously get reflected in
the output as shown above, but instead it takes some amount of physical time for the
change to propagate through the gate. Propagation delay is a low-level detail of hard-
ware design that ultimately determines the speed of a system. Normally, we will want
to ignore propagation delay, but for a moment, let’s consider how it can be modeled in
behavioral Verilog with the #.

module top;
 integer ia,ib;
 reg a,b;
 wire c;

 xor x1(c,a,b);

 initial
 begin
 for (ia=0; ia<=1; ia = ia+1)
 begin
 a = ia;
 for (ib=0; ib<=1; ib = ib + 1)
 begin
 b = ib;
 #10 $display("a=%d b=%d c=%d",a,b,c);
 end
 end
 end
endmodule

86 Verilog Digital Computer Design: Algorithms into Hardware

The behavioral exclusive OR example in section 3.6.3 deadlocks the simulator because
it does not have any time control. If we put some time control in this always block
(say a propagation delay of #1), the simulator will have an opportunity to schedule the
test code instead of deadlocking inside the always block:

module top;
 integer ia,ib;
 reg a,b;
 reg c;

 always #1
 c = a^b;

 initial
 begin
 for (ia=0; ia<=1; ia = ia+1)
 begin
 a = ia;
 for (ib=0; ib<=1; ib = ib + 1)
 begin
 b = ib;
 #10 $display("a=%d b=%d c=%d",a,b,c);
 end
 end
 $finish;
 end
endmodule

As in the last example, a and b are initialized to be 0 at $time 0. When #10 executes
at $time 0, the initial block relinquishes control, which gives the always loop
an opportunity to execute. The first thing that the always block does is to execute #1,
which relinquishes control until $time 1. Since no other block wants to execute at
$time 1, execution of the always block resumes at $time 1, and it computes a new
value (0^0=0) for the reg c . Because this is an always block, it loops back to the #1.
Since no other block wants to execute at $time 2, execution of the always block
resumes at $time 2, and it recomputes the same value for the reg c that it just com-
puted at $time 1. The always block continues to waste real time by unnecessarily
recomputing the same value all the way up to $time 9.

Finally, the $display statement executes at $time 10. The test code prints out “a=0
b=0 c=0 ” and goes through its inner loop once again. While $time is still 10, b
becomes 1. The #10 relinquishes control, and the always block will have another ten
chances to compute that c is now 1. The remaining lines of the truth table are printed
out in a similar fashion.

87Verilog Hardware Description Language

There is an equivalent structural netlist notation for an always block with # time
control. The following behavioral and structural code do similar things in $time :

reg c; wire c;
always #2 xor #2 x2(c,a,b);
 c = a^b;

Both model an exclusive OR gate with a propagation delay of two units of $time . On
many (but not all) implementations of Verilog simulators, the structural version is more
efficient from a real-time standpoint. This is discussed in greater detail in chapter 6.

3.7.1.3 Generating the system clock with # for simulation
Registers and controllers are driven by some kind of a clock signal. One way to gener-
ate such a signal is to have an initial block give the clock signal an initial value,
and an always block that toggles the clock back and forth:

reg sysclk;

initial
 sysclk = 0;

always #50
 sysclk = ~sysclk;

The above generates a system clock signal, sysclk , with a period of 100 units of
$time .

3.7.1.4 Ordering processes without advancing $time
It is permissible to use a delay of #0. This causes the current process to relinquish
control to other processes that need to execute at the current $time . After the other
processes have relinquished control, but before $time advances, the current process
will resume. This kind of time control can be used to enforce an order on processes
whose execution would otherwise be unpredictable. For example, the following is
algorithmically the same as the first example in 3.7.1 (b is assigned first, then a), but
both assignments occur at $time 0:

88 Verilog Digital Computer Design: Algorithms into Hardware

3.7.2 @ time control
When an @ precedes a statement, the scheduler will not execute the statement that
follows until the event described by the @ occurs. There are several different kinds of
events that can be specified after the @, as shown below:

@(expression)
@(expression or expression or ...)
@(posedge onebit)
@(negedge onebit)
@ event

When there is a single expression in parenthesis, the @ waits until one or more bit(s) in
the result of the expression change. As long as the result of the expression
stays the same, the block in which the @ occurs will remain suspended. When multiple
expressions are separated by or , the @ waits until one or more bit(s) in the result of
any of the expression s change. The word or is not the same as the operator |.

In the above, onebit is single-bit wire or reg (declared without the square bracket).
When posedge occurs in the parenthesis, the @ waits until onebit changes from a
0 to a 1. When negedge occurs in the parenthesis, the @ waits until onebit changes
from a 1 to a 0. The following mean the same thing:

 reg a,b,c; reg a,b,c;
 @(c) a=b; @(posedge c or negedge c) a=b;

An event is a special kind of Verilog variable, which will be discussed later.

module two_blocks_time_control;
 integer x,y;
 initial
 begin
 #0
 a=1;
 $display("a is one at $time=%d",$time);
 end
 initial
 begin
 b=2;
 $display("b is two at $time=%d",$time);
 end
endmodule

89Verilog Hardware Description Language

3.7.2.1 Efficient behavioral modeling of combinational
 logic with @

Although you can model combinational logic behaviorally using just the #, this is not
an efficient thing to do from a simulation real-time standpoint. (Using # for combina-
tional logic is also inappropriate for synthesis.) As illustrated in section 3.7.1.2, the
always block has to reexecute many times without computing anything new. Although
physical hardware gates are continuously recomputing the same result in this fashion,
it is wasteful to have a general-purpose computer spend real time simulating this. It
would be better to compute the correct result once and wait until the next time the result
changes.

How do we know when the output changes? Recall that perfect combinational logic
(i.e., with no propagation delay) by definition changes its output whenever any of its
input(s) change. So, we need the Verilog notation that allows us to suspend execution
until any of the inputs of the logic change:

module top;
 integer ia,ib;
 reg a,b;
 reg c;

 always @(a or b)
 c = a^b;

 initial
 begin
 for (ia=0; ia<=1; ia = ia+1)
 begin
 a = ia;
 for (ib=0; ib<=1; ib = ib + 1)
 begin
 b = ib;
 #10 $display("a=%d b=%d c=%d",a,b,c);
 end
 end
 $finish;
 end
endmodule

90 Verilog Digital Computer Design: Algorithms into Hardware

At the beginning, both the initial and the always block start execution. Since
neither a nor b have changed yet, the always block suspends. The first time through
the loops in the initial block, a and b are initialized to be 0 at $time 0. When #10
executes at $time 0, the initial block relinquishes control, and the always block
is given an opportunity to do something. Since a and b both changed at $time 0, the
@ does not suspend, but instead allows the always block to compute a new value
(0^0=0) for the reg c . The always block loops back to the @. Since there is no way
that a or b can change anymore at $time 0, the simulator advances $time . The next
thing scheduled to execute is the $display statement at $time 10. (Like the ex-
ample in section 3.7.1.1, but unlike the example in section 3.7.1.2, the simulator does
not waste real time computing anything for $time 1 through 9 since nothing changes
during that $time .) The simulator prints out that “a=0 b=0 c=0 ” at $time 10, and
then goes through the inner loop once again. While $time is still 10, b becomes 1.
The #10 relinquishes control, and the always block has an opportunity to do some-
thing. Since b just changed (though a did not change), the @ does not suspend, and c
is now 1. After $time advances, the $display prints out that “a=0 b=1 c=1 ” at
$time 20. The last two lines of the truth table are printed out in a similar fashion at
$time s 30 and 40.

Since this is a model of combinational logic, it is very important that every input to the
logic be listed after the @. We refer to this list of inputs to the physical gate as the
sensitivity list.

3.7.2.2 Modeling synchronous registers
Most synchronous registers that we deal with use rising edge clocks. Using @ with
posedge is the easiest way to model such devices. For example, consider an enabled
register whose input (of any bus width) is din and whose output (of similar width as
din) is dout . At the rising edge of the clock, when ld is 1, the value presented on
din will be loaded. Otherwise dout remains the same. Assuming din, dout, ld
and sysclk are taken care of properly elsewhere in the module, the behavioral code
to model such an enabled register is:

always @(posedge sysclk)
 if (ld)
 dout = din;

Similar Verilog code can be written for a counter register that has clr , ld , and cnt
signals:

91Verilog Hardware Description Language

 always @(posedge sysclk)
 begin
 if (clr)
 dout = 0;
 else
 if (ld)
 dout = din;
 else
 begin
 if (cnt)
 dout = dout + 1;
 end
 end

Note that the nesting of if statements indicates the priority of the commands. If a
controller sends this counter a command to clr and cnt at the same time, the counter
will ignore the cnt command. At any $time when this always block executes, only
one action (clearing, loading, counting or holding) occurs. Of course, improper nesting
of if statements could yield code whose behavior would be impossible with physical
hardware.

3.7.2.3 Modeling synchronous logic controllers
Most controllers are triggered by the rising edge of the system clock. It is convenient to
use posedge to model such devices. For example, assuming that stop , speed and
sysclk have been dealt with properly elsewhere in the module, the second ASM
chart in section 2.1.1.2 could be modeled as:

always
 begin
 @(posedge sysclk) //this models state GREEN
 stop = 0;
 speed = 3;
 @(posedge sysclk) //this models state YELLOW
 stop = 1;
 speed = 1;
 @(posedge sysclk) //this models state RED
 stop = 1;
 speed = 0;
 end

There are several things to note about the above code. First, the indentation is used only
to promote readability. Assuming the code for generating sysclk given in section

92 Verilog Digital Computer Design: Algorithms into Hardware

3.7.1.3, the stop = 0 and speed = 3 statements execute at $time 50, 350, 650,
... because there is no time control among them. The indentation simply highlights the
fact that these two statements execute atomically, as a unit, without being interrupted
by the simulator.

The second thing to note is that the = in Verilog is just a software assignment state-
ment. (The variable is modified at the $time the statement executes. The variable will
retain the new value until modified again.) This is different than how we use = in ASM
chart notation. (The command signal is a function of the present state. The command
signal does not retain the new value after the rising edge of the system clock but instead
returns to its default value.) Another way of saying this is that there are no default
values in standard Verilog variables as there are for ASM chart commands. Despite the
distinction between Verilog and ASM chart notation, we can model an ASM chart in
Verilog by fully specifying every command output in every state. For those states where
a command is not mentioned in an ASM chart, one simply codes a Verilog assignment
statement that stores the default value into the Verilog variable corresponding to the
missing ASM chart command. The stop=0 and speed=0 statements above were not
shown in the original ASM chart but are required for the Verilog code to model what
the hardware would actually do.

The third thing is the names of the states are not yet included in the Verilog code. (The
comments are of course ignored by Verilog.) Eventually, we will find a way of includ-
ing meaningful state names in the actual code.

The fourth thing is that this ASM chart does not have any RTN (i.e., it is at the mixed
stage). We will need an additional Verilog notation to model ASM charts that use RTN.
This notation is discussed in section 3.8.

3.7.2.4 @ for debugging display
@ can also be used for causing the Verilog simulator to print debugging output that
shows what happens as actions unfold in the simulation. For example,

 always @(a or b or c)
 $display("a=%b b=%b c=%b at $time=%d",a,b,c,$time);

The above block would eliminate the need for the designer to worry about putting
$display statements in the test code or in the code for the machine being tested.

With clocked systems, it is often convenient to display information shortly after each
rising edge of the clock:

93Verilog Hardware Description Language

 always @(posedge sysclk)
 #20 $display("stop=%b speed=%b at $time=%d",
 stop,speed,$time);

3.7.3 wait
The wait statement is a form of time control that is quite different than # or @. The
wait statement stands by itself. It does not modify the statement which follows in the
way that @ and # do (i.e., there must be a semicolon after the wait statement). The
wait statement is used primarily in test code. It is not normally used to model hard-
ware devices in the way @ and # are used. The syntax for the wait statement is:

wait(condition);

The wait statement suspends the current process. The current process will resume
when the condition becomes true. If the condition is already true, the current process
will resume without $time advancing.

For example, suppose we want to exhaustively test one of the slow division machines
described in chapter 2. The amount of time the machine takes depends on how big the
result is. Furthermore, different ASM charts described in chapter 2 take different amounts
of $time . Therefore, the best approach is to use the ready signal produced by the
machine:

module top;
 reg pb;
 integer x,y;
 wire [11:0] quotient;
 wire sysclk;
 ...
 initial
 begin
 pb= 0;
 x = 0;
 y = 0;
 #250;
 @(posedge sysclk);
 while (x<=4095)
 begin
 for (y=1; y<=4095; y = y+1)
 begin
 @(posedge sysclk);
 pb = 1;

94 Verilog Digital Computer Design: Algorithms into Hardware

 @(posedge sysclk);
 pb = 0;
 @(posedge sysclk);
 wait(ready);
 @(posedge sysclk);
 if (x/y === quotient)
 $display("ok");
 else
 $display("error x=%d y=%d x/y=%d quotient=%d",

 x,y,x/y,quotient);
 end
 x = x + 1;
 end
 $stop;
 end
 endmodule

This test code (based on the nested loops given in section 3.4) embodies the assump-
tions we made in section 2.2.1. The first two @s in the loop produce the pb pulse that
lasts exactly one clock cycle. The third @ makes sure that the machine has enough time
to respond (and make ready 0). The wait(ready) keeps the test code synchro-
nized to the division machine, so that the test code is not feeding numbers to the divi-
sion machine too rapidly. The fourth @ makes sure the machine will spend the required
time in state IDLE, before testing the next number.

The ellipsis shows where the code for the actual division machine was omitted in the
above. The quotient is produced by this machine which is not shown here. The
design of this code will be discussed in the next chapter.

3.8 Assignment with time control
The # and @ time control, discussed in sections 3.7.1 and 3.7.2, precede a statement.
These forms of time control delay execution of the following statement until the speci-
fied $time . There are two special kinds of assignment statements5 that have time
control inside the assignment statement. These two forms are known as blocking and
non-blocking procedural assignment.

Continued

5 Assignment with time control is not accepted by some commercial synthesis tools but is accepted by all
Verilog simulators. Since there are problems with intra-assignment delay (section 3.8.2.1), some authors
recommend against its use, but when used as recommended later in this chapter (section 3.8.2.2), it becomes
a powerful tool. Chapter 7 explains a preprocessor that allows all synthesis tools to accept the use proposed
in this book.

95Verilog Hardware Description Language

3.8.1 Blocking procedural assignment
The syntax for blocking procedural assignment has the # or @ notation (whose syntax
is described in sections 3.7.1 and 3.7.2) after the = but before the expression. For ex-
ample, three common forms of this are:

var = # delay expression ;
var = @(posedge onebit) expression ;
var = @(negedge onebit) expression ;

Other variations are also legal. What distinguishes this from a normal instantaneous
assignment is that the expression is evaluated at the $time the statement first ex-
ecutes, but the variable does not change until after the specified delay. For example,
assuming temp is a reg that is not used elsewhere in the code and that temp is
declared to be the same width as a and b, the following two fragments of code mean
the same thing:

 initial
 initial begin
 begin ...
 ... temp = b;
 a = @(posedge sysclk) b; @(posedge sysclk) a = temp;

 end end

Blocking procedural assignment is almost what we need to model an ASM chart with
RTN. The one problem with it, as its name implies, is that it blocks the current process
from continuing to execute additional statements at the same $time . We will not use
blocking procedural assignment for this reason.

3.8.2 Non-blocking procedural assignment
The syntax for a non-blocking procedural assignment is identical to a blocking proce-
dural assignment, except the assignment statement is indicated with <= instead of =.
This should be easy to remember, because it reminds us of the ← notation in ASM
charts. For example, the most common form of the non-blocking assignment used in
later chapters is:

 var <= @(posedge onebit) expression ;

96 Verilog Digital Computer Design: Algorithms into Hardware

Typically, onebit is the sysclk signal mentioned in section 3.7.1.3. Although other
forms are legal, the above @(posedge onebit) form of the non-blocking assign-
ment is the one we use in almost every case for ← in ASM charts.6

The expression is evaluated at the $time the statement first executes and further state-
ments execute at that same $time , but the variable does not change until after the
specified delay. For example, assuming temp is a reg that is not used elsewhere in the
left-hand code and that temp is declared to be the same width as a and b, the following
two fragments of code mean nearly the same thing:

 always @(posedge sysclk)
 #0 a = temp;

 initial initial
 begin begin

 a <= @(posedge sysclk) b; temp = b;

 end end

Note that, all by itself, the effect of the non-blocking assignment is like having a paral-
lel always block to store into a. An advantage of the <= notation is that you do not
have to code a separate always block for each register.

A subtle detail is that the right-hand always block is the last thing to execute (#0) at
a given $time . Similarly, the <= causes the reg to change only after every other
block (including the one with the <=) has finished execution. This subtle detail causes
a problem, which is discussed in the next section, and which is solved in section 3.8.2.2.

3.8.2.1 Problem with <= for RTN for simulation
An obvious approach to translating RTN from an ASM chart into behavioral Verilog is
just to put <= for each ← in the ASM chart. For example, assuming stop , speed ,
count and sysclk are taken care of properly elsewhere, one might think that the
ASM chart from section 2.1.1.3 could be translated into Verilog as:

6 The exceptions are when the left-hand side of the ← is a memory being changed every clock cycle, in

which case @ (negedge onebit) is appropriate, as explained in section 6.5.2, and for post-synthesis
behavorial modeling of logic equations, in which case # is appropriate, as explained in section 11.3.3.

97Verilog Hardware Description Language

 always
 begin
 @(posedge sysclk) //this models state GREEN
 stop = 0;
 speed = 3;

 @(posedge sysclk) //this models state YELLOW
 stop = 1;
 speed = 1;
 count <= @(posedge sysclk) count + 1;

 @(posedge sysclk) //this models state RED
 stop = 1;
 speed = 0;
 count <= @(posedge sysclk) count + 2;
 end

However, when one runs this code on a Verilog simulator, the following incorrect result
is produced (assuming the debugging always block shown in section 3.7.2.4):

stop=0 speed=11 count=000 at $time= 70
stop=1 speed=01 count=000 at $time= 170
stop=1 speed=00 count=001 at $time= 270
stop=0 speed=11 count=010 at $time= 370
stop=1 speed=01 count=010 at $time= 470
stop=1 speed=00 count=011 at $time= 570

Recall from section 2.1.1.3 that at $time 370, count should be three instead of two.
The underlying cause of this error is the subtle detail mentioned above: The <= causes
the reg to change only after every other block (including the one with the <=) has
finished execution.

The above Verilog starts to execute the statements for state YELLOW at $time 150.
The last of these statements evaluates count+1 at $time 150 and schedules the stor-
age of the result. Since count is still 3’b000 at $time 150, the result scheduled to be
stored at the end of $time 250 is 3’b001. The @(posedge sysclk) that starts
state RED causes the always block to suspend until $time 250. The problem shown
above occurs at $time 250 because the assignment initiated by the <= at $time 150
will be the last thing that occurs at $time 250. Prior to the assignment, the process
will resume and execute the three statements, including count <= @(posedge
sysclk) count + 2 . Since count is still 3’b000, this <= schedules 3’b010 to be
assigned at $time 350, which is not what happens in an ASM chart. As soon as the
assignment of 3’b010 has been scheduled at $time 250, 3’b001 will be stored into
count (as a result of the first <=).

98 Verilog Digital Computer Design: Algorithms into Hardware

3.8.2.2 Proper use of <= for RTN in simulation
To overcome the problem described in the last section, you need to use a non-zero
delay after each @(posedge sysclk) that denotes a rectangle of the ASM chart.
For example, here is the complete Verilog code to model (in a primitive way) the ASM
chart from section 2.1.1.3:

 module top;
 reg stop;
 reg [1:0] speed;
 reg sysclk;
 reg [2:0] count;

 initial
 sysclk = 0;
 always #50
 sysclk = ~sysclk;

 always
 begin

@(posedge sysclk) #1 //this models state GREEN
 stop = 0;
 speed = 3;

@(posedge sysclk) #1 //this models state YELLOW
 stop = 1;
 speed = 1;
 count <= @(posedge sysclk) count + 1;

@(posedge sysclk) #1 //this models state RED
 stop = 1;
 speed = 0;
 count <= @(posedge sysclk) count + 2;
 end

 always @(posedge sysclk)
 #20 $display("stop=%b speed=%b count=%b at $time=%d",
 stop,speed,count,$time);

 initial
 begin
 count = 0;
 #600 $finish;
 end
 endmodule

Let’s analyze the reason why each block is required in this module. The first initial
block is required to give sysclk a value other than 1’bx at $time 0. The next block

99Verilog Hardware Description Language

toggles sysclk so that the clock period is 100. If sysclk were not initialized at
$time 0, it would stay 1’bx forever (~1’bx is 1’bx).

The only new thing in the always block that models the ASM chart is the addition of
#1 after each @(posedge sysclk) . The always block that follows it displays
stop , speed and count during each state.

The test code in the final initial block simply initializes count to be 3’b000. (In a
real machine, this would occur in a state of the ASM, but instead here it is part of the
test code for the purposes of illustration only.) The test code schedules a $finish
system task to be called at $time 600. This is required because the always blocks
would otherwise tell the simulator to go on forever.

With the #1 after each @, the Verilog simulator produces the following correct output:

stop=0 speed=11 count=000 at $time= 70
stop=1 speed=01 count=000 at $time= 170
stop=1 speed=00 count=001 at $time= 270
stop=0 speed=11 count=011 at $time= 370
stop=1 speed=01 count=011 at $time= 470
stop=1 speed=00 count=100 at $time= 570

3.8.2.3 Translating goto -less ASMs to behavioral Verilog
This book concentrates on several design techniques that all begin by expressing an
ASM with behavioral Verilog. Since Verilog is a goto -less language, only certain
kinds of ASMs can be translated in this fashion. Chapters 5 and 7 explain how arbitrary
ASMs can be translated into Verilog, but this section will concentrate only on ASMs
that adhere to this highly desirable goto- less style.

3.8.2.3.1 Implicit versus explicit style
The approach of expressing a state machine with high-level statements (like if and
while) is known as implicit style because the next state of the machine is described
implicitly through the use of @(posedge sysclk) within the statements of an
always block. Implicit style is the opposite of the explicit style table (illustrated in
section 2.4.1) that requires the designer to say what state the machine goes to under all
possible circumstances.

Experienced hardware designers who are new to Verilog may find the implicit style
approach confusing because it requires thinking about a state machine in a different
way. The implicit style is much more like software concepts, such as the distinction
between if and while . On the other hand, experienced software designers may also
find this approach difficult at first because the timing relationship between <= and

100 Verilog Digital Computer Design: Algorithms into Hardware

decisions in Verilog is different than in conventional software languages. The follow-
ing sections go through a series of examples that illustrate some typical kinds of ASM
constructs and how they translate into implicit style Verilog.

3.8.2.3.2 Identifying the infinite loop
Unlike software, all ASMs have at least one infinite loop. Implicit style behavioral
Verilog is defined by an always block. Many times this always block can also serve
to implement the infinite loop of the ASM. In the following ASM, the transitions from
states FIRST, SECOND, THIRD and FOURTH are implicit. The designer does not
have to say anything about their next states. The transition from FIFTH to FIRST oc-
curs because of the always :

Figure 3.2 Every ASM has an infinite loop.

Inside the always , there is a one to one mapping of rectangles into @(posedge
sysclk) statements. In this example, the ASM has five states, so the always uses
five @(posedge sysclk) :

 module top;
 //Following are actual hardware registers of ASM
 reg [11:0] a,b;

 //Following is NOT a hardware register
 reg sysclk;

 //The following always block models actual hardware

a 1

b a

a b

b 4

a 5

FIRST

SECOND

THIRD

FOURTH

FIFTH

101Verilog Hardware Description Language

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

 //Following initial and always blocks do not correspond to
 // hardware. Instead they are test code that shows what
 // happens when the above ASM executes

 always #50 sysclk = ~sysclk;
 always @(posedge sysclk) #20
 $display(“%d a=%d b=%d “, $time, a, b);

 initial
 begin
 sysclk = 0;
 #1400 $stop;
 end
 endmodule

The above is slightly more primitive than what will be used in later chapters, but the
emphasis of this example is to show how an ASM translates into Verilog. In the above,
there are three always blocks, but only the first one corresponds to hardware. The
other two always blocks and the initial block are necessary for simulation (in
later chapters these other blocks will be moved to other modules).

3.8.2.3.3 Recognizing if else
Most ASMs have decisions. Decisions in implicit Verilog are described either with the
if statement (possibly followed by else) or with the while statement. For hardware
designers without extensive software experience, determining whether the if or the
while is appropriate for a particular decision can seem confusing at first.

The following ASM is an example where the if else construct is appropriate:

Continued

102 Verilog Digital Computer Design: Algorithms into Hardware

For brevity, only the always block that corresponds to the actual hardware is shown:

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 if (a == 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 end
 else
 begin
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

The if else is appropriate here because only one of the states (THIRD or FOURTH)
will execute. Because a is one in state SECOND, state THIRD will execute. In the
following very similar Verilog, state FOURTH rather than state THIRD will execute:

Figure 3-3. ASM corresponding to if else .

1a == 10

a 1

b a

a b b 4

a 5

FIRST

SECOND

THIRDFOURTH

FIFTH

103Verilog Hardware Description Language

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 if (a != 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 end
 else
 begin
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

3.8.2.3.4 Recognizing a single alternative
Often, it is appropriate to omit the else , as in the following ASM:

Figure 3-4. ASM without else .

1a == 10

a 1

b a

a b

b 4

a 5

FIRST

SECOND

THIRD

FOURTH

FIFTH

104 Verilog Digital Computer Design: Algorithms into Hardware

which translates to the following Verilog:

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 if (a == 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

In the above, both state THIRD and state FOURTH will execute because a is one in
state SECOND. The following very similar Verilog skips directly from state SECOND
to state FIFTH:

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 if (a != 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

3.8.2.3.5 Recognizing while loops
The following two ASMs describe the same hardware. The first of the following two
ASMs is very similar to the one in section 3.8.2.3.4, except that state FOURTH does
not necessarily go to state FIFTH . Instead, state FOURTH goes to a decision which

105Verilog Hardware Description Language

determines whether to go to state THIRD or state FIFTH. The second of the following
two ASMs is a much less desirable way to describe the identical hardware. It is undesir-
able because the a==1 test is duplicated; however, its meaning is exactly the same as
the first of the following two ASMs:

Figure 3-5. ASM with while .

Figure 3-6. Equivalent to figure 3-5.

1
a == 1

0

a 1

b a

a b

b 4

a 5

FIRST

SECOND

THIRD

FOURTH

FIFTH

1

1

a == 1

a == 1

0

0

a 1

b a

a b

b 4

a 5

FIRST

SECOND

THIRD

FOURTH

FIFTH

106 Verilog Digital Computer Design: Algorithms into Hardware

The reason the first of the ASMs is preferred is because it is more obvious that it trans-
lates into a while loop in Verilog:

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 while (a == 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end

In fact, the only syntactic difference between the above Verilog and the Verilog in sec-
tion 3.8.2.3.4 is that the word if has been changed to while . The advantage of look-
ing at this particular ASM as a while loop is that the decision a==1 is shared by both
state SECOND and state FOURTH. With the while loop, the designer does not have
to worry that the decision is actually part of two states. Many practical algorithms that
produce useful results (as illustrated in chapter 2) demand a loop of this style. The
while in Verilog makes this easy.

3.8.2.3.6 Recognizing forever
Sometimes machines need initialization states that execute only once. Since synthesis
tools only accept behavioral Verilog defined with always blocks, such ASMs still
begin with the keyword always . However, the looping action of the always is not
pertinent. (If the designer only wanted to simulate the machine, initial would work
just as well as always , but ultimately the synthesis tool will demand always .)

In order to describe the infinite loop that exists beyond the initialization states, the
designer must use forever . For example, consider the following ASM:

107Verilog Hardware Description Language

It is almost identical to the one in section 3.8.2.3.4, except that state FIFTH forms an
infinite loop to state SECOND instead of going to state FIRST. The corresponding
Verilog implements this using forever :

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 forever
 begin
 @(posedge sysclk) #1; // state SECOND
 b <= @(posedge sysclk) a;
 if (a == 1)
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 end
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end
 end

Figure 3-7. ASM needing forever.

1a == 10

a 1

b a

a b

b 4

a 5

FIRST

SECOND

THIRD

FOURTH

FIFTH

108 Verilog Digital Computer Design: Algorithms into Hardware

3.8.2.3.7 Translating into an if at the bottom of forever
The following two ASMs are equivalent. Many designers would think the one on the
left is more natural because it describes a loop involving only state THIRD. As long as
a==1 , the machine stays in state THIRD. The noteworthy thing about this machine is
that state THIRD also forms the beginning of a separate infinite loop. (Such an infinite
loop might be described with an always or in this case a forever .) Because of this,
it is preferred to think of this ASM as an if at the bottom of a forever , as illustrated
by the ASM on the right:

Figure 3-8. Two ways to draw if at the bottom of forever .

The ASM on the right tests if a != 1 to see whether to leave the loop involving only
state THIRD and proceed to state FIFTH. The reason the ASM on the right is preferred
is that its translation into Verilog is obvious:

1a ! = 1

a 1

a b

b 4

a 5

FIRST

THIRD

FOURTH

FIFTH

0

0

1
a == 1

a 1

a b

b 4

a 5

FIRST

THIRD

FOURTH

FIFTH

109Verilog Hardware Description Language

 always
 begin
 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;
 @(posedge sysclk) #1; // state FOURTH
 b <= @(posedge sysclk) 4;
 forever
 begin
 @(posedge sysclk) #1; // state THIRD
 a <= @(posedge sysclk) b;
 if (a != 1)
 begin
 @(posedge sysclk) #1; // state FIFTH
 a <= @(posedge sysclk) 5;
 end
 end
 end

In software, an if never implements a loop. This is also true in Verilog of an isolated
if , but the combination of an if at the bottom of forever or always has the effect
of nesting a non-infinite loop inside an infinite loop. It is the forever or always
that forms the looping action, not the if . This example illustrates a kind of implicit
behavioral Verilog that sometimes causes novice Verilog designers confusion. It is sug-
gested that the reader should fully appreciate this example before proceeding to later
chapters. Designers need to be careful not to confuse if with while .

3.9 Tasks and functions
In conventional software programming languages, it is common for a programmer to
use functions and procedures (known as void functions in C) to break an algorithm
apart into manageable pieces. There are two main motivations for using functions and
procedures: they make the top-down design of a complex algorithm easier, and they
sometimes allow reuse of the same code. Verilog provides tasks (which are like proce-
dures) and functions, which can be called from behavioral code.

3.9.1 Tasks
The syntax for a task definition is:

110 Verilog Digital Computer Design: Algorithms into Hardware

This task definition must occur inside a module. The task is usually intended to be
called only by initial blocks, always blocks and other tasks within that module.
Tasks may have any behavioral statements, including time control.

Verilog lets the designer choose the order in which the input , output and inout
definitions are given. (The order shown above is just one possibility.) The order in
which input , output and inout definitions occur is based on the calling sequence
desired by the designer. The sequence in which the formal arguments are listed in some
combination of input , output and/or inout definitions determines how the actual
arguments are bound to the formal definitions when the task is called.

The purpose of an input argument is to send information from the calling code into
the task by value. An input argument may include a width (which is equivalent to a
wire of that width) or it may be given a type of integer or real in a separate
declaration. An input argument may not be declared as a reg .

The purpose of an output argument is to send a result from the task to the calling
code by reference. An output argument must be declared as a reg , integer or
real in a separate declaration.

An inout definition combines the roles of input and output . An inout argu-
ment must be declared as a reg , integer or real in a separate declaration.

3.9.1.1 Example task
Consider the following nonsense code:

task name;
 input arguments ;
 output arguments ;
 inout arguments ;
 ...
 declarations ;
 begin
 statement ;
 ...
 end
 endtask

111Verilog Hardware Description Language

integer count,sum,prod;
initial
 begin
 sum = 0;
 count = 1;

 sum = sum + count;
 prod = sum * count;
 count = count + 2;
 $display(sum,prod);

 sum = sum + count;
 prod = sum * count;
 count = count + 3;
 $display(sum,prod);

 sum = sum + count;
 prod = sum * count;
 count = count + 5;
 $display(sum,prod);

 sum = sum + count;
 prod = sum * count;
 count = count + 7;
 $display(sum,prod);

 $display(sum,prod,count);
 end

After initializing sum and count , there is a great similarity in the following four
groups (each composed of four statements). Using a task allows this initial block
to be shortened:

 integer count,sum,prod;
 initial
 begin
 sum = 0;
 count = 1;
 example(sum,prod,count,2);
 example(sum,prod,count,3);
 example(sum,prod,count,5);
 example(sum,prod,count,7);
 $display(sum,prod,count);
 end

112 Verilog Digital Computer Design: Algorithms into Hardware

The definition of the task example is:

task example;
 inout sum_arg; //1st positional argument
 output prod_arg; //2nd positional argument
 inout count_arg; //3rd positional argument
 input numb_arg; //4th positional argument

 integer count_arg,numb_arg,sum_arg,prod_arg;

 begin
 sum_arg = sum_arg + count_arg;
 prod_arg = sum_arg * count_arg;
 count_arg = count_arg + numb_arg;
 $display(sum_arg,prod_arg);

 end
 endtask

Because the formal inout sum_arg is defined first, it corresponds to the actual sum
in the initial block. Similarly, the formal output prod_arg corresponds to
prod , and the formal inout count_arg corresponds to count . In order to pass
different numbers each time to example , the formal numb_arg is defined to be
input . The order in which the arguments are declared (in this case with the integer
type) is irrelevant. The $display statements produce the following:

1 1
4 12

10 60
21 231
21 231 18

3.9.1.2 enter_new_state task
The translation of the ASM chart from section 2.1.1.3 into Verilog given in section
3.8.2.2 is correct but could be improved in two ways. First, this translation did not
include state names as part of the Verilog code (they were only in the comments).
Second, this translation did not automatically provide default values for states where
command signals were not mentioned, as occurs in ASM chart notation.

To overcome both of these limitations, we will define a task, which is arbitrarily given
the name enter_new_state . The purpose of this task is to do things that occur
whenever the machine enters any state. This includes storing into present_state a
representation of a state (which is passed as an input argument, this_state), doing
the #1 (which is legal in a task) to allow the <= to work properly and giving default

113Verilog Hardware Description Language

values to the command outputs. In order to use this task, the designer needs to define
several arbitrary bit patterns for the state names, define the present_state as a
reg and indicate the number of bits in the present_state :

‘define NUM_STATE_BITS 2
‘define GREEN 2’b00
‘define YELLOW 2’b01
‘define RED 2’b10

 ...

 reg [‘NUM_STATE_BITS-1:0] present_state;

 ...

The always block that implements the ASM chart is similar to the one given in sec-
tion 3.8.2.2:

 always
 begin
 @(posedge sysclk) enter_new_state(‘GREEN);
 speed = 3;

 @(posedge sysclk) enter_new_state(‘YELLOW);
 stop = 1;
 speed = 1;
 count <= @(posedge sysclk) count + 1;

 @(posedge sysclk) enter_new_state(‘RED);
 stop = 1;
 count <= @(posedge sysclk) count + 2;
 end

The only differences are that the state names are passed as arguments to
enter_new_state , and default values do not have to be mentioned. For example,
state GREEN uses the default value 0 for stop , and state RED uses the default value
0 for speed .

The task that accomplishes these things for this particular ASM is:

114 Verilog Digital Computer Design: Algorithms into Hardware

Even though default values are assigned for every state, since no time control occurs in
this task after the assignment of default values, those states where non-default values
are assigned work correctly. For example, assume the machine enters state GREEN at
$time 50. At that $time , present_state will be assigned 2’b00. At $time 51,
stop and speed will assigned their defaults of 0, but since there is no more time
control, the always block which called on the task is not interruptable. At the same
$time 51 speed changes to 3. Any other module concerned about speed at $time
51 would only observe a change to a value of 3. To understand this, we need to distin-
guish between sequence and $time . Because the task was called, two changes oc-
curred to speed in sequence, but since they happened at the same $time , the outside
world can only observe the last change. This creates exactly the effect we want. We are
now ready to model ASM charts that do practical things with behavioral Verilog. Ex-
amples of translating ASM charts into Verilog using tasks like this are given in chapter
4.

3.9.2 Functions
The syntax for a function is similar to a task:

task enter_new_state;
 input [‘NUM_STATE_BITS-1:0] this_state;
 begin
 present_state = this_state;
 #1 stop = 0;
 speed = 0;
 end
 endtask

function type name;
 input arguments ;
 ...
 declarations ;
 begin
 statement ;
 ...
 name = expression ;
 end
 endfunction

except only input arguments are allowed. In the function definition, type is either
integer , real or a bit width defined in square brackets. The statement(s) in a
function never include any time control. The name of the function must be assigned

115Verilog Hardware Description Language

the result to be returned (like the syntax of Pascal). These restrictions on functions
exist so that every use of a function could, in theory, be synthesized as combinational
logic.

3.9.2.1 Real function example
Verilog does not provide built-in trigonometric functions, but it is possible to define a
function that approximates such a function using a polynomial:

function real sine;
 input x;
 real x;
 real y,y2,y3,y5,y7;
 begin
 y = x*2/3.14159;
 y2 = y*y;
 y3 = y*y2;
 y5 = y3*y2;
 y7 = y5*y2;
 sine = 1.570794*y - 0.261799*y3 +
 0.0130899*y5 - 0.000311665*y7;
 end
 endfunction

Such a function might be useful if a designer needs to test the Verilog model of a
machine, such as a math coprocessor, that implements an ASM to approximate tran-
scendental functions.

3.9.2.2 Using a function to model combinational logic
A more common use of a function in Verilog is as a behavioral way to describe combi-
national logic. For example, rather than being described by the logic gates given in
section 2.5, a half-adder can also be described by a truth table:

inputs output

 a b c s

 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 0

116 Verilog Digital Computer Design: Algorithms into Hardware

Such a table can be written in Verilog as a function defined with a case statement.
Since the result of the function is composed of more than one bit, the function is better
documented by using local variables (c and s in this example), which are concatenated
to form the result:

function [1:0] half_add;
 input a,b;
 reg c,s; //local for documentation

 begin
 case ({a,b})
 2’b00: begin
 c = 0;
 s = 0;
 end
 2’b01: begin
 c = 0;
 s = 1;
 end
 2’b10: begin
 c = 0;
 s = 1;
 end
 2’b11: begin
 c = 1;
 s = 0;
 end
 default:begin
 c = 1’bx;
 s = 1’bx;
 end
 endcase
 half_add = {c,s};
 end
 endfunction

So half_add(0,0) returns 2’b00 and half_add(1,1) returns 2’b10. Both
half_add(1,0) and half_add(0,1) return 2’b01. All other possibilities, such
as half_add(1’bx,0) return 2’bx. In order to use this function to model the com-
binational logic of a half-adder, the designer would define an always block with @
time control as explained in section 3.7.2.1:

117Verilog Hardware Description Language

reg C,S;
...
always @(A or B)
 {C,S} = half_add(A,B);

The actual argument A in the always block is bound to the formal a in half_add ,
and the actual argument B is bound to the formal b. The locals c and s are concat-
enated to form a two-bit result (hence the [1:0] declaration for the function.) This two
bit result is stored in the two-bit concatenation {C,S} .

3.10 Structural Verilog, modules and ports
The preceding sections have covered many behavioral and a few structural (built-in
gate), features of Verilog. This section discusses the most central aspect of Verilog:
how the designer can define and instantiate Verilog modules to achieve hierarchical
design.

Verilog code is composed of one or more modules. Each module is either a top-level
module or an instantiated module. A top-level module is one (like all the earlier ex-
amples in this chapter) which is not instantiated elsewhere in the source code. There is
only one copy of a top-level module. The definition of a top-level module is the same as
the code that executes. The reg s and wire s in a top-level module are unique.

An instantiated module, on the other hand, is a unique executable copy of the defini-
tion. There may be many such copies. The definition is a “blueprint” for each of these
instances. For example, section 2.5 illustrates an adder that needs three instances of a
half-adder. It is only necessary to define the half-adder once. It can be instantiated as
many times as required. Each instance of an instantiated module has its own copy of
the reg s and wire s specified by the designer. For example, the value stored in a
particular reg in one instance of a module need not be the same as the value stored in
the reg of the same name in another instance of that module.

Instantiated modules should have ports that allow outside connections with each in-
stance. It is this interconnection (i.e., structure) with the system external to the instance
that gives each instance its unique role in the total system. Normally, each instance is
internally identical to other instances derived from the same module definition, and
how an instance is connected within the system gives that instance its characteristics.

The syntax for a module definition with ports is:

118 Verilog Digital Computer Design: Algorithms into Hardware

An example of a structural instance is given using built-in gates in section
3.5.1. Examples of designer supplied (rather than built-in) structural instances
will be given later in section 3.10.6. A behavioral instance is either an al-
ways or initial block, as explained in section 3.4. (Tasks and functions are local to
a module, and may be called by a behavioral instance , but are not by them-
selves behavioral instances .) The declarations include specifying either
wire or reg of an appropriate width for each port listed in parentheses, as well as any
local variables used internally within the module.

The order in which ports appear in the parentheses on the first line of the module
definition is the order which matters elsewhere when this module is instantiated. Every
one of the ports listed in the parentheses must be defined as one of the following:
input , output or inout . Unlike tasks, the order in which the ports of a module
appears in the input , output or inout definitions themselves is irrelevant. Al-
though there is some vague similarity, the meaning of the words input , output and
inout for a module is quite different than for a task. The designer makes the choice
among these three alternatives based on the direction of information flow relative to the
module in question. When making this decision, the designer looks at the system from
the viewpoint of this one module.

3.10.1 input ports
An input port is one through which information comes into the module in question
from the outside world. An input port must be declared within the module to have a
size, or else Verilog will treat the input port as a one-bit wire , which is often incor-

module name (port1 , port2 , ...);
 input ... ;
 output ... ;
 inout ... ;
 declarations ;
 structural instance ;
 ...
 behavioral instance ;
 ...
 tasks
 ...
 functions
 ...
endmodule

119Verilog Hardware Description Language

rect. There are two ways to declare the size: either as a wire of some size (regardless
of whether the module uses a behavioral instance or a structural in-
stance) or with the input definition.7

Failure to declare an input port as a wire will cause it to be treated as a single-bit
wire .

3.10.2 output ports
An output port is one through which information goes out of the module in question
to the outside world. When the module in question uses a behavioral instance
to produce the output port, the output port must be declared as a reg of some
size. When the module in question uses a structural instance , the output
port should be declared as a wire of some size. In other words, whether to declare an
output port to be a wire or reg depends on whether it is generated by structural or
behavioral code within the module in question.

3.10.3 inout ports
An inout port is one that is used to send information both directions. The advantage
of an inout port is that the same port can do two separate things (at different times).
The Verilog code for using an inout port is more complex than for simple input and
output ports. An inout port corresponds to a hardware device known as a tri-state
buffer. The details of inout ports and tristate buffers are discussed in appendix E.

3.10.4 Historical analogy: pins versus ports
Consider the analogy that “ports are like the doors of a building.” For buildings like a
store in a shopping center, some doors are labeled “IN,” meaning that customers who
wish to enter the store in question should go through that door. Those who are finished
shopping leave through a different door labeled “OUT.” It would be possible to look at
the world from the viewpoint of the parking lot, but it is more convenient to look at
things relative to the store in question (since there may be many stores in the shopping
center to choose from).

There is another analogy for ports: ports are like the pins on an integrated circuit.
Some pins are inputs and some pins are outputs. This is a very good analogy, but it is a
little dangerous because when a large design is fabricated by a modern silicon foundry,
most of the ports in the design do not correspond to a physical pin on the final inte-
grated circuit.

To understand this pin analogy, let’s digress for a moment and look at the history of
hierarchical design and integrated circuit technology. Before the mid-1960s, all digital
computers were built using discrete electronic devices (such as relays, vacuum tubes or
7 Some synthesis tools require that the input definition have the size.

120 Verilog Digital Computer Design: Algorithms into Hardware

transistors). It takes several such devices, wired together by hand in a certain structure,
to make a gate, and of course, as we have seen in section 2.5, it takes many such gates
to make anything remotely useful. In the early 1960’s, photographic technologies be-
came practical to mass-produce entire circuits composed of several devices on a wafer
of semiconductor material (typically silicon). The wafer is sliced into “chips,” which
are mounted in epoxy (or similar material) with metal pins connecting the circuitry on
the chip to the outside. There are several standard sizes for the number and placement
of pins. For example, one of the oldest and smallest configurations is the 16-Pin Dual
Inline Package (DIP). It is a rectangle with seven data pins on each side, and no pins on
the top or bottom. (Two pins are reserved for power and ground.) A notch or dot at the
top of the chip indicates where pin one is.

Designers in the 1960s and 1970s were limited by the number of devices that fit onto
the chip and also by the number of pins allowed in these standard sizes. Realizing the
power of hierarchical design, these designers built chips that contain standard building
blocks that fit within the number of pins available. An example is a four-bit counter in
one chip, TTL part number 74xx163, which is still widely used. Whenever designers
needed a four-bit counter, they could simply specify a 74xx163, without worrying about
its internal details. This, of course, is hierarchical design and provides the same mental
simplification as instantiating a module. Physically, the pins of the 74xx163 chip would
be soldered into the final circuit.

The relationship between these early integrated circuits and hierarchical design is not
perfect, hence the danger of saying ports are like pins. If a design needs one 13-bit
counter, a designer in the 1970s would have to specify that four 74xx163s be soldered
into the final circuit to act as a single counter. There is an interconnection between
these four chips so that they collectively count properly. From a hierarchical stand-
point, we want to see only one black box, with a 13-bit bus, but this counter is fabri-
cated as four 74xx163s wired together. Some of the physical pins (connected to another
one of the 74xx163s) have nothing to do with the ports of a 13-bit counter.

With modern silicon fabrication technologies, the limitations on the number of devices
on a chip have been eased, but the limitations on physical pins have become even more
severe. Although chips can contain millions of gates, the number of pins allowed is
seldom more than a few hundred. Hierarchical design should be driven by the problem
being solved (which is the fundamental principle of all top-down design) and not by the
limitations (such as pins) of the technology used. Every physical pin on a chip is (part
of) a Verilog port, but not every Verilog port necessarily gets fabricated as a physical
pin(s). Even so, the analogy is a good one: ports are like pins.

121Verilog Hardware Description Language

3.10.5 Example of a module defined with a behavioral instance
Section 2.5 defines an adder several ways. The simplest way to explain what an adder
does is to describe it behaviorally. Since an adder is combinational logic, we can use
the @ time control technique discussed in section 3.7.2.1 to model its behavior. How-
ever, since an adder is used in a larger structure, we should make the always block
that models the adder’s behavior part of a module definition. Those ports (a and b) that
are physical inputs to the fabricated adder will be input ports to this module, and are
exactly the variables listed in the sensitivity list. The port that is a physical output
(sum) is, of course, defined to be an output port. Since this module computes sum
with behavioral code, sum is declared to be a reg . (There are no “registers” in combi-
national logic, but a Verilog reg is used in a behavioral model of combinational logic.
A reg is not a “register” as long as the sensitivity list has all the inputs listed.) As in the
example of section 2.5, the widths of a and b are two bits each, and the width of sum
is three bits:

module adder(sum,a,b);
 input [1:0] a,b;
 output [2:0] sum;
 wire [1:0] a,b;
 reg [2:0] sum;

 always @(a or b)
 sum = a + b;
endmodule

The widths shown on input and output definitions are optional for simulation pur-
poses.8

To exhaustively test this small adder, test code similar to section 3.7.2.1 enumerates all
possible combinations of a and b:

8 The width will not be shown on later examples in this chapter, although describing the width on input and
output definitions would be legal in simulation. The width might be required to overcome the limitations
of some commercial simulation tools.

122 Verilog Digital Computer Design: Algorithms into Hardware

 module top;
 integer ia,ib;
 reg [1:0] a,b;
 wire [2:0] sum;

 adder adder1(sum,a,b);

 initial
 begin
 for (ia=0; ia<=3; ia = ia+1)
 begin
 a = ia;
 for (ib=0; ib<=3; ib = ib + 1)
 begin
 b = ib;
 #1 $display(“a=%d b=%d sum=%d”,a,b,sum);
 end
 end
 end
 endmodule

The important thing in this top-level test module is that adder (the name of the mod-
ule definition) is instantiated in top with the name adder1 . In the top-level module,
a and b are reg s because, within this module (top), a and b are supplied by behav-
ioral code. On the other hand, sum is supplied by adder1 , and so top declares sum
to be a wire . The syntax for instantiating a user defined module is similar to instanti-
ating a built-in gate. In this example, the local sum of top corresponds to the output
port (coincidentally named sum) of an instance of module adder . If the names (such
as sum) in module adder were changed to other names (such as total), the module
would work the same:

module adder(total,alpha,beta);
 input alpha,beta;
 output total;
 wire [1:0] alpha,beta;
 reg [2:0] total;

 always @(alpha or beta)
 total = alpha + beta;
endmodule

123Verilog Hardware Description Language

It is the position within the parentheses, and not the names, that matter9 when the
module is instantiated in the test code.

3.10.6 Example of a module defined with a structural instance
Of course, in hierarchical design, we need a structural definition of the module. As
described in section 2.5, the module adder can be defined in terms of instantiation of
an instance of a half_adder (which we will call ha1) and an instance of a
full_adder (which we will call fa1):

module adder(sum,a,b);
 input a,b;
 output sum;
 wire [1:0] a,b;
 wire [2:0] sum;

 wire c;

 half_adder ha1(c,sum[0],a[0],b[0]);
 full_adder fa1(sum[2],sum[1],a[1],b[1],c);
endmodule

Since the adder is defined with two structural instances (named ha1 and
fa1), all of the ports, including the output port, sum, are wire s. The local wire c
sends the carry from the half-adder to the full-adder. Of course, we need identical test
code as in the last example, and we also need module definitions for full_adder
and half_adder .

3.10.7 More examples of behavioral and structural instances
Even though half_adder and full_adder are instantiated structurally in section
3.10.6, they can be defined either behaviorally or structurally. For example, a behav-
ioral definition of these modules is:

9 Verilog provides an alternative syntax, described in chapter 11, that allows the name, rather than the posi-
tion, to determine how the module is instantiated.

124 Verilog Digital Computer Design: Algorithms into Hardware

Once again, notice that the outputs are reg s. Concatenation is used on the left of the =
to make the definition of the module simple. {cout,s} is a two-bit reg capable of
dealing with the largest possible number (2’b11) produced by a+b+cin .

An alternative would be to define the half_adder and full_adder modules with
structural instances , which means all outputs are wire s:

module half_adder(c,s,a,b);
 input a,b;
 wire a,b;
 output c,s;
 reg c,s;

 always @(a or b)
 {c,s} = a+b;
endmodule

module full_adder(cout,s,a,b,cin);
 input a,b,cin;
 wire a,b,cin;
 output cout,s;
 reg cout,s;

 always @(a or b or cin)
 {cout,s} = a+b+cin;
endmodule

module half_adder(c,s,a,b);
 input a,b;
 wire a,b;
 output c,s;
 wire c,s;

 xor x1(s,a,b);
 and a1(c,a,b);
endmodule

module full_adder(cout,s,a,b,cin);
 input a,b,cin;
 wire a,b,cin;
 output cout,s;
 wire cout,s;
 wire cout1,cout2,stemp;

 half_adder ha2(cout1,stemp,a,b);
 half_adder ha3(cout2,s,cin,stemp);
 or o1(cout,cout1,cout2);
endmodule

125Verilog Hardware Description Language

There are two instances of half_adder (ha2 and ha3). The only difference be-
tween these two instances is how they are connected within full_adder . There are
three local wires (cout1 , cout2 and stemp) that allow internal interconnection within
the module.

At this point, we have reduced the problem down to Verilog primitive gates (and,
or, xor) whose behavior is built into Verilog.

3.10.8 Hierarchical names
Although ports are intended to be the way in which modules communicate with each
other in a properly functioning system, Verilog provides a way for one module to ac-
cess the internal parts of another module. Conventional high-level languages, like C
and Pascal, have scope rules that absolutely prohibit certain kinds of access to local
information. Verilog is completely different in this regard. The philosophy of Verilog
for accessing variables is very similar the philosophy of the NT or UNIX operating
systems for accessing files: if you know the path to a file (within subdirectories), you
can access the file. Analogously in Verilog: if you know the path to a variable (within
modules), you can access the variable.

For example, using the definition of adder given in section 3.10.6, and the instance
adder1 shown in the test code of section 3.10.5, adder1 has a local wire c that is not
accessible to the outside world. The following statement in the test code would allow
the designer to observe this wire, even though there is no port that outputs c :

$display(adder1.c);

A name, such as adder1.c is known as a hierarchical name, or path.

The following statement allows the designer to observe cout2 from the test code:

$display(adder1.fa1.cout2);

which happens to be the same as:

$display(adder1.fa1.ha3.c);

The parts of a hierarchical name are separated by periods. Every part of a hierarchical
name, except the last, is the name of an instance of a module. The names of the corre-
sponding module definitions (adder , full_adder and half_adder in the above
example) never appear in a hierarchical name.

126 Verilog Digital Computer Design: Algorithms into Hardware

3.10.9 Data structures
The term “structure” has three distinct meanings in computer technology. Elsewhere in
this book, “structure” takes on its hardware meaning: the interconnection of modules
using wires. But you have probably heard of the other two uses of this word: “struc-
tured programming,” and “data structures.” The concept of “structured programming”
is a purely behavioral software concept which is closely related to what we call goto-
less programming (see section 2.1.4). “Data structures” are software objects that allow
programmers to solve complex problems in a more natural way.

The period notation used in Verilog for hierarchical names is reminiscent of the nota-
tion used in conventional high-level languages for accessing components of a “data
structure” (record in Pascal, struct in C, and class in C++). In fact, you can
create such software “data structures” in Verilog by defining a portless module that has
only data, but that is intended to be instantiated. Such a portless but instantiated module
is worthless for hardware description, but is identical to a conventional software “data
structure.” Such a module has no behavioral instances or structural instances. For ex-
ample, a data structure could be defined to contain payroll information about an em-
ployee:

module payroll;
 reg [7:0] id;
 reg [5:0] hours;
 reg [3:0] rate;
endmodule

Suppose we have two employees, joe and jane . Each employee has a unique in-
stance of this module:

payroll joe();
payroll jane();

 initial
 begin
 joe.id=254;
 joe.hours=40;
 joe.rate=14;
 jane.id=255;
 jane.hours=63;
 jane.rate=15;
 end

The empty parentheses are a syntactic requirement of Verilog. In this example, the
fields of jane contain the largest possible values.

127Verilog Hardware Description Language

Data structures usually have a limited set of operations that manipulate the fields of the
data. For example, the hours and rate fields can be combined to display the corre-
sponding total pay. This operation is defined as a local task of the module. However,
since there are no behavioral instances in this module, this task sits idle until it is called
from the outside (using a hierarchical name):

 module payroll;
 reg [7:0] id;
 reg [5:0] hours;
 reg [3:0] rate;

 task display_pay;
 integer pay; //local
 begin
 if (hours>40)
 pay = 40*rate + (hours-40)*rate*3/2;
 else
 pay = hours*rate;
 $display("employee %d earns %d",id,pay);
 end
 endtask
 endmodule

 module top;
 payroll joe();
 payroll jane();
 initial
 begin
 joe.id=254;
 joe.hours=40;
 joe.rate=14;
 joe.display_pay;
 jane.id=255;
 jane.hours=63;
 jane.rate=15;
 jane.display_pay;
 end
 endmodule

This is very close to the software concept of object-oriented programming in languages
like C++, except the current version of Verilog lacks the inheritance feature found in
C++.

128 Verilog Digital Computer Design: Algorithms into Hardware

Data structures are a powerful use of hierarchical names, but they are somewhat afield
from the central focus of this book: hardware structures. Application of hierarchical
names are useful in test code, and so it is important to understand them. Also, the above
example helps illustrate what instantiation really means in Verilog.

3.10.10 Parameters
Verilog modules allow the definition of what are known as parameters. These are con-
stants that can be different for each instance. For example, suppose you would like to
define a module behaviorally that models an enabled register of arbitrary width:

module enabled_register(dout, din, ld, sysclk);
 parameter WIDTH = 1;
 input din,ld,sysclk;
 output dout;
 wire [WIDTH-1:0] din;
 reg [WIDTH-1:0] dout;
 wire ld,sysclk;

 always @(posedge sysclk)
 if (ld)
 dout = din;
endmodule

By convention, we use capital letters for parameters, but this is not a requirement. Note
that parameters do not have a backquote preceding them.

If you instantiate this module without specifying a constant, the default given in the
parameter statement (in this example, 1) will be used as the WIDTH, and so the
instance R1 will be one bit wide:

 wire ldR1,sysclk;
 wire R1dout,R1din;
 enabled_register R1(R1dout,R1din,ldR1,sysclk);

To specify a non-default constant, the syntax is a # followed by a list of constants in
parentheses. Since there is only one parameter in this example, there can be only one
constant in the parentheses. For example, to instantiate a 12-bit register for R12:

 wire ldR2,sysclk;
 wire [11:0] R12dout,R12din;
 enabled_register #(12) R12(R12dout,R12din,ldR12,sysclk);

129Verilog Hardware Description Language

Verilog requires that the width of a wire that attaches to an output port match the
reg declaration within the module. In this example, R12dout is a wire twelve bits
wide, the parameter WIDTH in the instance R12 is twelve, and the corresponding out-
put port, dout , is declared as reg[WIDTH-1:0] , which is the same as reg [11:0] .

Since there is only one constant in the parentheses above, it is legal to omit the paren-
theses:

 enabled_register #12 R12(R12dout,R12din,ldR12,sysclk);

Sometimes, you need more than one constant in the definition of a module. For ex-
ample, a combinational multiplier has two input buses, whose widths need not be the
same:

module multiplier(prod,a,b);
 parameter WIDTHA=1,WIDTHB=1;
 output prod;
 input a,b;
 reg [WIDTHA+WIDTHB-1:0] prod;
 wire [WIDTHA-1:0] a;
 wire [WIDTHB-1:0] b;

 always @(a or b)
 prod = a*b;
endmodule

Here is an example of instantiating this:

wire [5:0] hours;
wire [3:0] rate;
wire [9:0] pay;

multiplier #(6,4) m1(pay,hours,rate);

3.11 Conclusion
Modules are the basic feature of the Verilog hardware description language. Modules
are either top-level or instantiated. Top-level modules are typically used for test code.
Instantiated modules have ports, which can be defined to be either input , output or
inout . Constants in modules may be defined with the parameter statement. A
module is either defined with a behavioral instance (always or initial

130 Verilog Digital Computer Design: Algorithms into Hardware

block(s) or with a structural instance (built-in gates or instantiation of other
designer-provided modules). Behavioral and structural instances may be mixed in the
same module.

Variables produced by behavioral code, including outputs from the module, are de-
clared to be reg s. Behavioral modules have the usual high-level statements, such as
if and while , as well as time control (#, @ and wait) that indicate when the process
can be suspended and resumed. The $time variable simulates the passage of time in
the fabricated hardware. Verilog makes a distinction between algorithmic sequence and
the passage of $time . The most important forms of time control are # followed by a
constant, which is used for generating the clock and test vectors; @(posedge
sysclk) , which is used to model controllers and registers; and @ followed by a
sensitivity list, which is used for combinational logic. Verilog provides the non-block-
ing assignment statement, which is ideal for translating ASM charts that use RTN into
behavioral Verilog. Verilog also provides tasks and functions, which like similar fea-
tures in conventional high-level languages, simplify coding.

Structural modules have a simple syntax. They may instantiate other designer-provided
modules to achieve hierarchical design. They may also instantiate built-in gates. The
syntax for both kinds of instantiation is identical. All variables in a structural module,
including outputs, are wire s.

Hierarchical names allow access to tasks and variables from other modules. Use of
hierarchical names is usually limited to test code.

The next chapter uses the features of Verilog described in this chapter to express the
three stages (pure behavioral, mixed and pure structural) of the design process for the
childish division machine designed manually in chapter 2. The advantage of using Verilog
at each of these stages is that the designer can simulate each stage to be sure it is correct
before going on to the next stage. Also, the final Verilog code can be synthesized into a
working piece of hardware, without the designer having to toil manually to produce a
flattened circuit diagram and netlist.

3.12 Further reading

LEE, JAMES M., Verilog Quickstart, Kluwer, Norwell, MA, 1997. Gives several examples
of implicit style.

PALNITKAR , S., Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall
PTR, Upper Saddle River, NJ, 1996. An excellent reference for all aspects of Verilog.

131Verilog Hardware Description Language

SMITH, DOUGLAS J., HDL Chip Design: A Practical Guide for Designing, Synthesizing,
and Simulating ASICs and FPGAs Using VHDL or Verilog, Doone Publications, Madi-
son, AL, 1997. A Rosetta stone between Verilog and VHDL.

STERNHEIM, ELIEZER, RAJVIR SINGH and YATIN TRIVEDI, Digital Design with Verilog HDL,
Automata Publishing, San Jose, CA, 1990. Has several case studies of using Verilog.

THOMAS, DONALD E. and PHILIP R. MOORBY, The Verilog Hardware Description Lan-
guage, Third edition, Kluwer, Norwell, MA., 1996. Explains how a simulator works
internally.

3.13 Exercises
3-1. Design behavioral Verilog for a two-input 3-bit wide mux using the technique
described in section 3.7.2.1. The port list for this module should be:

module mux2(i0, i1, sel, out);

3-2. Design a structural Verilog module (mux2) equivalent to problem 3-1 using only
instances of and , or , not and buf .

3-3. Modify the solution to problem 3-1 to use a parameter named SIZE that allows
instantiation of an arbitrary width for i0 , i1 and out as explained in section 3.10.10.
For example, the following instance of this device would be useful in the architecture
drawn in section 2.3.1:

wire muxctrl;
wire [11:0] x,y,muxbus;
mux2 #12 mx(x,y,muxctrl,muxbus);

3-4. Given the instance (mx) of the module (mux2) shown in problem 3-3, what hierar-
chical names are equivalent to x , y , muxctrl and muxbus?

3-5. Design behavioral Verilog for combinational incrementor and decrementor mod-
ules using the technique described in section 3.7.2.1. Use a parameter named SIZE
that allows instantiation of an arbitrary width for the ports as explained in section 3.10.10.

132 Verilog Digital Computer Design: Algorithms into Hardware

3-6. Design behavioral Verilog for an up/down counter (section D.8) using the tech-
nique described in section 3.7.2.2. The port list for this module should be:

module updown_register(din,dout,ld,up,count,clk);

3-7. Modify the solutions to problem 3-6 to use a parameter named SIZE that allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10.

3-8. Design behavioral Verilog for a simple D-type register (section D.5) using the
technique described in section 3.7.2.2. Use a parameter named SIZE that allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10. The port
list for this module should be:

module simpled_register(din,dout,clk);

3-9. Design a structural Verilog module (updown_register) equivalent to problem
3-7 using only instances of the modules defined in problems 3-3, 3-5 and 3-8.

3-10. For each of the ASM charts given in problem 2-10, translate to implicit style
Verilog using non-blocking assignment for ← and @(posedge sysclk)#1 for
each rectangle, as explained in section 3.8.2.3.1. As in that example, there should be
one always that models the hardware, one always for the $display and an
always and initial for sysclk . Compare the result of simulation with the manually
produced timing diagram of problem 2-10.

3-11. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM chart of section 3.8.2.3.3. Show the values of a and b in the first
twelve clock cycles, and label each clock cycle to indicate which state the machine is
in. Next, run the original implicit style Verilog code equivalent to the ASM and make
a printout of the .log file. On this printout, write the name of the state that the machine
is in during each clock cycle. The manually created timing diagram should agree with
the Verilog .log file. Finally, modify the following:

 @(posedge sysclk) #1; // state FIRST
 a <= @(posedge sysclk) 1;

133Verilog Hardware Description Language

to become:

 @(posedge sysclk) #1; // state FIRST
 a = 1;

Run the modified Verilog code and make a printout of its .log file. On this printout,
circle the differences, if any, that exist between the correct timing diagram and the .log
file for the modified Verilog. In no more than three sentences, explain why there are or
are not any differences between = and <=.

3-12. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.4. Show the values of a and b in the first twelve
clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run the original implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
.log file. Finally, modify the code to change the if to a while . Run the modified
Verilog code and make a printout of its .log file. On this printout, circle the differences,
if any, that exist between the correct timing diagram and the .log file for the modified
Verilog. In no more than three sentences, explain why there are or are not any differ-
ences between if and while .

3-13. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.5. Show the values of a and b in the first twelve
clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run the original implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
.log file. Finally, modify the code to eliminate all #1s. Run the modified Verilog code
and make a printout of its .log file. On this printout, circle the differences, if any, that
exist between the correct timing diagram and the .log file for the modified Verilog. In
no more than three sentences, explain why there are or are not any differences between
using and omitting #1s.

