3. VERILOG HARDWARE
DESCRIPTION
LANGUAGE

The previous chapter describes how a designer may manually use ASM charts (to de-
scribe behavior) and block diagrams (to describe structure) in top-down hardware de-
sign. The previous chapter also describes how a designer may think hierarchically,
where one module’s internal structure is defined in terms of the instantiation of other
modules. This chapter explains how a designer can express all of these ideas in a spe-
cial hardware description language known as Verilog. It also explains how Verilog can
test whether the design meets certain specifications.

3.1 Simulation versus synthesis

Although the techniques given in chapter 2 work wonderfully to design small machines
by hand, for larger designs it is desirable to automate much of this process. To automate
hardware design requires a Hardware Description Language (HDL), a different nota-
tion than what we used in chapter 2 which is suitable for processing on a general-
purpose computer. There are two major kinds of HDL processing that can occur: simu-
lation and synthesis.

Simulationis the interpretation of the HDL statements for the purpose of producing
human readable output, such as a timing diagram, that predicts approximately how the
hardware will behave before it is actually fabricated. As such, HDL simulation is quite
similar to running a program in a conventional high-level language, such as Java Script,
LISP or BASIC, that is interpreted. Simulation is useful to a designer because it allows
detection of functional errors in a design without having to fabricate the actual hard-
ware. When a designer catches an error with simulation, the error can be corrected with
a few keystrokes. If the error is not caught until the hardware is fabricated, correcting
the problem is much more costly and complicated.

Synthesiss the compilation of high-level behavioral and structural HDL statements
into a flattened gate-level netlist, which then can be used directly either to lay out a
printed circuit board, to fabricate a custom integrated circuit or to program a program-
mable logic device (such as a ROM, PLA, PLD, FPGA, CPLD, etc.). As such, synthe-
sis is quite similar to compiling a program in a conventional high-level language, such
as C. The difference is that, instead of producing object code that runs on the same
computer, synthesis produces a physical piece of hardware that implements the compu-
tation described by the HDL code. For the designer, producing the netlist is a simple
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step (typically done with only a few keystrokes), but turning the netlist into physical
hardware is often costly, especially when the goal is to obtain a custom integrated
circuit from a commercial silicon foundry. Typically after synthesis, but before the
physical fabrication, the designer simulates the synthesized netlist to see if its behavior
matches the original HDL description. Such post-synthesis simulation can prevent costly
errors.

3.2 \Verilog versus VHDL

HDLs are textual, rather than graphic, ways to describe the various stages in the top-
down design process. In the same language, HDLs allow the designer to express both
the behavioral and structural aspects of each stage in the design. The behavioral fea-
tures of HDLs are quite similar to conventional high-level languages. The features that
make an HDL unique are those structural constructs that allow description of the
instantiation and interconnection of modules.

There are many proprietary HDLs in use today, but there are only two standardized and
widely used HDLs: Verilog and VHDL. Verilog began as a proprietary HDL promoted

by a company called Cadence Data Systems, Inc., but Cadence transferred control of
Verilog to a consortium of companies and universities known as Open Verilog Interna-
tional (OVI). Many companies now produce tools that work with standard Verilog.
Verilog is easy to learn. It has a syntax reminiscent of C (with some Pascal syntax
thrown in for flavor). About half of commercial HDL work in the U.S. is done in Verilog.

If you want to work as a digital hardware designer, it is important to know Verilog.

VHDL is a Department of Defense (DOD) mandated language that is used primarily by
defense contractors. Although most of the concepts in VHDL are not different from
those in Verilog, VHDL is much harder to learn. It has a rigid and unforgiving syntax
strongly influenced by Ada (which is an unpopular conventional programming lan-
guage that the DOD mandated defense software contractors to use for many years be-
fore VHDL was developed). Although more academic papers are published about VHDL
than Verilog, less than one-half of commercial HDL work in the U.S. is done in VHDL.
VHDL is more popular in Europe than it is in the U.S.

3.3 Role of test code

The original purpose of Verilog (and VHDL) was to provide designers a unified lan-
guage for simulating gate-level netlists. Therefore, Verilog combines a structural nota-
tion for describing netlists with a behavioral notation for saying how to test such netlists
during simulation. The behavioral notation in Verilog looks very much like normal
executable statements in a procedural programming language, such as Pascal or C. The
original reason for using such statements in Verilog code was to pstividgusto the
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netlist, and to test the subsequergponseof the netlist. The pairs of stimulus and
response are known test vectorsThe Verilgo that creates the stimulus artderves

the response is known as tiest cod@r testbenchSnoopy's "woof" in the comic strip

of section 2.2 is analougus to the role of the test codes warning us that the expected
response was not observéor example, one way to use simulation to test whether a
small machine works is to do &axhaustive testwhere the test code provides each
possible combination of inputs to the netlist and then checks the response of the netlist
to see if it is appropriate.

For example, consider the division machine of the last chapter. Assume we have devel-
oped a flattened netlist that implements the complete machine. It would not be at all
obvious whether this netlist is correct. Since the bus width specified in this problem is
small (twelve bits), we can write Verilog test code using procedural Verilog (similar to
statements in C) that does an exhaustive test. A reasonable approach would be to use
two nested loops, one that varies x through all its 4096 possible values, and one that
varies y through all its 4095 possible values. At appropriate times inside the inner loop,
the test code would check (using ifin statement) whether the output of the netlist
matches/y. Verilog provides most of the integer and logical operations found in C,
including those, such as division, that are difficult to implement in hardware. The origi-
nal intent was not to synthesize such code into hardware but to document how the
netlist should automatically be tested during simulation.

Verilog has all of the features you need to write conventional high-level language pro-
grams. Except for file Input/Output (I/O), any program that you could write in a con-
ventional high- level language can also be written in Verilog. The original reason Verilog
provides all this software power in a “hardware” language is because it is impossible to
do an exhaustive test of a complex netlist. The 12-bit division machine can be tested
exhaustively because there are only 16,773,120 combinations with the 24 bits of input
to the netlist. A well-optimized version of Verilog might be able to conduct such a
simulation in a few days or weeks. If the bus width were increased, say to 32-bits, the
time to simulate all ® combinations would be millions of years. Rather than give up
on testing, designers write more clever test code. The test code will appear longer, but
will execute in much less time. Of course, if a machine has a flaw that expresses itself
for only a few of the & test patterns, the probability that our fast test code will find the
flaw is usually low.

3.4 Behavioral features of Verilog

Verilog is composed of modules (which play an important role in the structural aspects
of the language, as will be described in section 3.10). All the definitions and declara-
tions in Verilog occur inside a module.
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3.4.1 Variable declaration

At the start of a module, one may declare variables totbger or to bereal
Such variables act just like the software declaratisinsandfloat in C. Here is an
example of the syntax:

integer x,y;
real Rain_fall;

Underbars are permitted in Verilog identifiers. Verilog is case sensitive, and so
Rain_fall  andrain_fall are distinct variables. The declaratiomeger and

real are intended only for use in test code. Verilog provides other data types, such as
reg andwire , used in the actual description of hardware. The difference between
these two hardware-oriented declarations primarily has to do with whether the variable
is given its value by behaviorakg ) or structuralWire ) Verilog code. Both of these
declarations are treated likmsigned in C. By defaultreg s andwire s are only

one bit wide. To specify a wideeg or wire , the left and right bit positions are
defined in square brackets, separated by a colon. For example:

reg [3:0] nibble,four_bits;

declares two variables, each of which can contain numbers between 0 and 15. The most
significant bit ofnibble is declared to beibble[3] , and the least significant bit is
declared to beibble[0] . This approach is known &le endian notationVerilog

also supports the opposite approach, knowmigagndian notation

reg [0:3] big_end_nibble;

where nowbig_end_nibble[3] is the least significant bit.

If you store a signed valtién areg , the bits are treated as though they are unsigned.
For example, the following:

four_bits = -5;

is the same as:

four_bits = 11;

Y1n order to simplify dealing with twos complement values, many implementations allow integers with an
arbitrary width. Such declarations are lileg s, except they are signed.
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Verilog supports concatenation of bits to form a widéne orreg , for example,
{nibble[2], nibble[1]} is a two bireg composed of the middle two bits of
nibble . Verilog also provides a shorthand for obtaining a contiguous set of bits taken
from a singleeg orwire . For example, the middle two bitsmibble can also be
specified amibble[2:1] . Itis legal to assign values using either of these notations.

Verilog also allows arrays to be defined. For example, an array of reals could be defined
as:

real monthly_precip[11:0];

Each of the twelve elements of the array (franonthly precip[0] to
monthly_precip[11] ) is a unique real number. Verilog also allows arraysief s
andreg s to be defined. For example,

reg [3:0] reg_arr[999:0];
wire[3:0] wir_arr[999:0];

Here,reg_arr[0] is a four-bit variable that can be assigned any number between 0
and 15 by behavioral code, huir_arr[0] is a four-bit value that cannot be as-
signed its value from behavioral code. There are one thousand elements, each four bits
wide, in each of these two arrays. Although [lhemeans bit select for scalar values,
such asibble[3], the[] means element select with arrays. itlegal to com-

bine these two uses ff into one, as iif(reg_arr[0][3]) . To accomplish this
operation requires two statements:

nibble = reg_arr[0];
if (nibble[3]) ...

3.4.2 Statements legal in behavioral Verilog
The behavioral statements of Verilog incltidiee following:

var = expression )

if ( condition )
statement

2 There are other, more advanced statements that are legal. Some of these are described in chapters 6
and 7.
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Continued

if ( condition )
statement

else

statement
while ( condition )
statement
for ( var=expression ; condition ; var=var -+expression )

statement
forever
statement
case ( expression )
constant : statement

default: Statement
endcase

where the italictatement , var , expression ,condition  andconstant are
replaced with appropriate Verilog syntax for those parts of the languasfatéx
ment is one of the above statements or a series of the above statemeirtated by
semicolons insidebegin andend. A var is a variable declared asteger,
real ,reg oraconcatenation ofg s. Avar cannot be declared adre .

3.4.3 Expressions
An expression  involves constants and variables (includivige s) with arithmetic

(+,- . *,,% ), logical &,&&,]|,|],*, ~,<<,>> ), relational
(,==,===,<=,>=,!=,I==> ) and conditional %: ) operators. Acondition

is an expression. &ondition  might be an expression involving a single bit, (as
would be producedy ||, &&, !, <, ==, ===, <=, >=, I=, I== or>)

or an expression involving several bits that is checked by Verilog to see if it is equal to
1. Except for=== and!==, these symbols have the same meaning as in C. Assuming

the result is stored in a 16-bég ,* the following table illustrates the result of these
operators, for example where the left operand (if present) is ten and the right operand is
three:

3Some results are different if the destination is declared differently.
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symbol name example [L6-bit
unsigned
result
+ addition 10+3 13
- subtraction 10-3 7
- negation -10 65526
* multiplication 1p*3 30
/ division 10/3 3
% remainder 10%3 1
<< shift left 10<<3 80
>> shift right 10>>3 1
& bitwise AND 10&3 2
| bitwise OR 10|3 11
A bitwise exclusive OR 1073 9
~ bitwise NOT ~10 65525
?: conditional operator 0?10:B 3
1?210:3 10
! logical NOT 110 0
&& logical AND 10&&3 1
Il logical OR 10(|3 1
< less than 10<3 0
== equal to 10==30
<= less than or equal to 10<+%3 0
>= greater than or equal 10>F 1
1= not equal 10!=3 1
> greater than 10>3 1
3.4.4 Blocks

All procedural statements occur in what are callledksthat are defined inside mod-
ules, after the type declarations. There are two kinds of procedural blocks: the
initial block and thealways block. For the moment, let us consider only the
initial block. Aninitial block is like conventional software. It starts execution
and eventually (assuming there is not an infinite loop insidénttial block) it

stops execution. The simplest form for a single Veriitaigal block is:
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module top;
declarations
initial
begin

statement

statement
end

endmodule

The name of the moduladp in this case) is arbitrary. The syntax of the
declarations is as described above. All variables should be declared sideh
ment is terminated with a semicolon. Verilog uses the Pascabbkgn andend,
rather than { and }. There is no semicolon aliegin orend. Thebegin andend

may be omitted in the rare case that only one procedural statement occuisiin the
tial  block.

Here is an example that prints out all 16,773,120 combinations of values described in
section 3.3:

module top;
integer x,y;
initial
begin
x=0;
while (x<=4095)
begin
for (y=1; y<=4095; y = y+1)
begin
$display("x=%d y=%d",x,y);
end
X=x+1;
end
end
$write("all *);
$display("done");
endmodule

The loop involvingx could have been written agax loop also but was shown above
as awhile for illustration. Note that Verilog does not have the ++ found in C, and so
itis necessary to say something fkey+1 . This assignment statement is just like
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its counterpart in C: it is instantaneous. The variable changes value before the next
statement executes (unlike the RTN discussed in the previous chaptegdis-he

play is asystem taskwhich begin with $) that does something similar to what
printf("%d %d \n",X,y) does in C: it formats the textual output according to
the string in the quotes. The system thskite does the same thing &display

except that it does not produce a new line:

x= 0y= 1
x= 0y= 2

x= 4095 y=4094
x= 4095 y= 4095
all done

The above code would fail if the declaration had been:

reg [11:0] x,y;

because, although twelve bits are adequate for the hardware, the test code requires that
x andy become 4096 in order for the loop to stop.

Since infinite loops are useful in hardware, Verilog provides the syotaxer
which means the same thingvelsile(1) . In addition, thelways block mentioned
above can be described asimitial block containing only &orever loop. For
simulation purposes, the following mean the same:

initial initial
begin begin
while(1) forever  always
begin begin begin
end end end
end end

For synthesis, one should use éh@ays block form only. The statemefdrever
is not a block and cannot stand by itself. Like other procedural statefoeensr
must be inside aimitial oralways block.
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3.4.5 Constants

By default, constants in Verilog are assumed to be decimal integers. They may be speci-
fied explicitly in binary, octal, decimal, or hexadecimal by prefacing them with the
syntax’b, 'o, 'd, or’h, respectively. For exampl&1101, ‘o015, 'd13,

'hd, and 13 all mean the same thing. If you wish to specify the number of bits in the
representation, this proceeds the quet®1101, 4’015, 4'd13, 4'hd .

3.4.6 Macros,include files and comments
As an aid to readability of the code, Verilog provides a way to define macros. For
example, thaluctrl codes described in 2.3.1 can be defined with:

‘define DIFFERENCE 6’0011001
‘define PASSB 60101010

Later in the code, a reference to these macros (preceded by a backquote) is the same as
substituting the associated value. The followiing mean the same:

if (aluctrl == ‘DIFFERENCE) if (aluctrl == 6’b011001)
$display("subtracting"); $display("subtracting");

Note the syntax difference between variables (suchiudrl ), macros (such as
‘DIFFERENCE), and constants (such@&&011001 ). Variables are not preceded by
anything. Macros are preceded by backquote. Constants may include one forward single
quote.

You can determine whether a macro is defined usidef and ‘endif. This
preprocessing feature should not be confusedifviti-or example, the following:

‘ifdef DIFFERENCE
$display("defined");
‘endif

prints the message regardless of the valuBIBFFERENCE, as long as that macro is
defined. The message is not printed only when there is ndefine  for
‘DIFFERENCE.

Verilog allows you to separate your source code into more than one file (justlike
clude in Cand{$l} in Pascal). To use code contained in another file, you say:

‘include "filename.v"
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There are two forms of comments in Verilog, which are the same as the two forms
found in C++. A comment that extends only for the rest of the current line can occur
after// . A comment that extends for several lines begins f¥itland ends with/ .

For example:

/* a multi line comment
that includes a declaration:
reg a;
which is ignored by Verilog
*
reg b; // this declaration is not ignored

3.5 Structural features of Verilog

Verilog provides a rich set of built-in logic gates, includamgl, or, xor, nand,

nor, not andbuf , that are used to describe a netlist. The syntax for these structural
features of Verilog is quite different than for any of the behavioral features of Verilog
mentioned earlier. The outputs of such gates are declareduioebe which by itself
describes a one-bit data type. (Regardless of width, an output generated by structural
Verilog code must be declared asvime .) The inputs to such gates may be either
declared asvire orreg (depending on whether the inputs are themselves computed
by structural or behavioral code). To instantiate such a gate, you say what kind of gate
you want kor for example) and the name of this particular instance (since there may
be several instancesxfr gates, let's name this examplk). Following the instance
name, inside parentheses are the output and input ports of the gate (for example, say the
output is awire namedc, and the inputs ara andb). The output(s) of gates are
always on the left inside the parentheses:

module easy_xor;
reg a,b;
wire c;
xor x1(c,a,b);

endmodule

People familiar with procedural programming languages, like C, mistakenly assume
this is “passing, a andb and then calling oror. " It is doing no such thing It
simply says that aror gate namedl has its output connected ¢oand its inputs
connected t@ andb. If you are familiar with graph theory, this notation is simply a
way to describe the edges,lf,c ) and vertexX1) of a graph that represents the
structure of a circuit.
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3.5.1 Instantiating multiple gates
Of course, there is an equivalent structuraraf/or gates that does the same thing as
anxor gate (recall the identig"b == a&(~b)|(~a)&b ):

module hard_xor;
reg a,b;
wire c;
wire t1,t2,not_a,not_b;

not il(not_a,a);

not i2(not_b,b);
and al(tl,not_a,b);
and a2(t2,a,not_b);
or o0l(c,t1,t2);

endmodule

The order in which gates are instantiated in structural Verilog code does not matter, and
so the following:

module scrambled_xor;
reg a,b;
wire c;
wire t1,t2,not_a,not_b;

or 01(c,t1,t2);

and al(tl,not_a,b);
and a2(t2,a,not_b);
not il(not_a,a);

not i2(not_b,b);

endmodule

means the same thing, because they both represent the interconnection in the following
circuit diagram:

not_a
a——o— = tl
a ) }

Figure 3-1. Exclusive or built with ANDs, OR and inverters.
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3.5.2 Comparison with behavioral code

Structural Verilog code does not describe the order in which computations implemented
by such a structure are carried out by the Verilog simulator. This is in sharp contrast to
behavioral Verilog code, such as the following:

module behavioral_xor;

reg a,b;
reg c;
reg t1,t2,not_a,not_b;

always ...
begin
not_a = ~a;
not_b = ~b;
t1 = not_a&b;
t2 = a&not_b;
c = t1t2;
end
endmodule

which is a correct behavioral rendition of the same idea. (The ellipses must be replaced
by a Verilog feature described later.) Alsg,t1, t2, not_a andnot_b must

be declared a®g s because this behavioral (rather than structural) code assigns val-
ues to them.

To rearrange the order of behavioral assignment statements is incorrect:

module bad_xor;

reg a,b;
reg c;
reg t1,t2,not_a,not_b;

always ...
begin
c =t1jt2;
t1 = not_a&b;
t2 = a&not_b;
not_a = ~a;
not_b = ~b;
end
endmodule

becauseot_a must be computed befor®e by the Verilog simulator.
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3.5.3 Interconnection errors: four-valued logic

In software, a bit is either a 0 or a 1. In properly functioning hardware, this is usually
the case also, but it is possible for gates to be wired together incorrectly in ways that
produce electronic signals that are neither 0 nor 1. To more accurately model such
physical possibilitie$,each bit in Verilog can be one of four thingsb0, 1'b1,

1'bz orl’bx .

Obviously,1’'b0 and1’bl correspond to the logical 0 and logical 1 that we would
normally expect to find in a computer. For most technologies, these two possibilities
are represented by a voltage on a wire. For example, active high TTL logic would
representl’bO0 as zero volts and’bl as five volts. Active low TTL logic would
representl’b0 as five volts and’bl as zero volts. Other kinds of logic families,
such as CMOS, use different voltages. ECL logic uses current, rather than voltage, to
represent information, but the concept is the same.

3.5.3.1 High impedance

In any technology, it is possible for gates to be miswired. One kind of problem is when
a designer forgets to connect a wire or forgets to instantiate a necessary gate. This
means that there is a wire in the system which is not connected to anything. We refer to
this ashigh impedancewhich in Verilog notation i¢’bz . The TTL logic family will
normally view high impedance as being the same as five volts. If the input of a gate to
which this wire is connected is active higfhz will be treated ag’bl , but if it is

active low, it will be treated a@sb0 . Other logic families tredt'bz differently. Fur-
thermore, electrical noise may caldez to be treated spuriously in any logic family.

For these reasons, it is important for a Verilog simulator to I'bat as distinct from

1'b0 andl’bl . For example, if the designer forgets the fimralgate in the example

from section 3.5.1:

module forget_or_that_outputs_c;
reg a,b;
wire ¢;
wire t1,t2,not_a,not_b;

not il(not_a,a);
not i2(not_b,b);
and al(tl,not_a,b);
and a2(t2,a,not_b);

endmodule

“Verilog also allows each bit to have a strength, which is an electronic concept (below gate level) beyond the
scope of this book.
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there is no gate that outputs the wireand therefore it remairisbz , regardless of
whata andb are.

3.5.3.2 Unknown value

Another way in which gates can be miswired is when the output of two gates are wired
together. This raises the possibility fifhting outputswhere one of the gates wants to
output al’b0, but the other wants to outputlébl . For example, if we tried to
eliminate theor gate by tying the output of bo#imd gates together:

module tie_ands_together;
reg a,b;
wire c;
wire t1,t2,not_a,not_b;

not il(not_a,a);
not i2(not_b,b);
and al(c,not_a,b);
and a2(c,a,not_b);

endmodule

the result is correcLl(pO ) whena andb are the same because the amd gates both
producel’b0 and there is no fight. The resultis incorrdcbx ) whena is1'b0 and
bis1’bl orvice versa, because the tarad gates fight each other. Fighting gates can
cause physical damage to certain families of logic (i.e., smoke comes out of the chip).
Obviously, we want to be able to have the simulator catch such problems before we
fabricate a chip that is doomed to blow up (literally)!

3.5.3.3 Use in behavioral code

Behavioral code may manipulate bits with the four-valued logic. Uninitiategd in
behavioral code start with a value’bk . (As mentioned above for structural code,
disconnectedavire s start with a value dbz .) All the Boolean operators, suché&s

| and~ are defined with the four-valued logic so that the usual rules of commutativity,
associativity, etc. apply.

The four-valued logic may be used with multivite s andreg s. When all the bits
are eithed’bl or1’b0 , such a8'b110 , the usual binary interpretation (powers of
two) applies. When any of the bits is eitHelbz or 1'bx , such as3’b1z0 , the
numeric value is unknown.
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Arithmetic and relational operators (includiag and!=) produce their usual results

only when both operands are composed’b® s andl’bl s. In any other case, the
result isbx . This relates to the fact the corresponding combinational logic required to
implement such operations in hardware would not produce a reliable result under such
circumstances. For example:

if (a==1'bx)
$display("a is unknown");

will never display the message, even wiaeis 1'bx , because the result of the
operation is alway4’bx . 1'bx is not the same @bl , and so theédisplay
never executes.

There are two special comparison operaters-(and!==) that overcome this limita-
tion.=== and!== cannot be implemented in hardware, but they are useful in writing
intelligent simulations. For example:

if (a===1'bx)
$display("a is unknown");

will display the message if and onlyaifis 1'bx .

To help understand the last examples, you should realize that the followinfy two
statements are equivalent:

if(expression) if((expression)===1'b1)
statement; statement;

The following table summarizes how the four-valued logic works with common opera-
tors:
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a b g==ba===b al=bal==b a&b a&&b alb allb a’b
001 1 0 O 0O 0 0 O 0
0110 O 1 1 0 0 1 1 1
0 x |x O x 1 0 0 x x X
0 z [x O x 1 0 0 x x X
1 010 O 1 1 0 0 1 1 1
111 1 0 O 1 1 1 1 0
1 x x O x 1 x x 1 1 X
1z x O x 1 x x 1 1 X
Xx 0 x O x 1 0 0 x x X
Xx 1 |x O x 1 x x 1 1 X
X X Kk 1 x 0 X X X X X
X z K O x 1 X X X X X
z 0 [x O x 1 0 0 x x X
z 1 |x O x 1 x x 1 1 X
z X kK O x 1 X X X X X
z z K 1 x 0 X X X X X

This table was generated by the following Verilog code:

module xz01,;
reg a,b,val[3:0];
integer ia, ib;

initial
begin

val[0] = 1'bO;
val[1l] = 1'b1;
val[2] = 1'bx;
val[3] = 1'bz;

$display

("ab a==ba===b al=bal==b a&ba&&b alb ajlb a"b");

for (ia = 0; ia<=3; ia=ia+1)
for (ib = 0; ib<=3; ib=ib+1)
begin
a = vallia];
b = val[ib];

$display
("%b %b %b %b %b %b %b %b %b %b %b*"
a,b,a==b,a===b,a!=b,a!==b,a&b,a&&b,a|b,a||b,a"b);
end
end
endmodule
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3.6 $time

A Verilog simulator executes as a software program on a conventional general-purpose
computer. How long it takes such a computer to run a Verilog simulation, knoead as

time depends on several factors, such as how fast the general-purpose computer is, and
how efficient the simulator is. The speed with which the designer obtains the simula-
tion results has little to do with how fast the eventual hardware will be when it is fabri-
cated. Therefore, the real time required for simulation is not important in the following
discussion.

Instead, Verilog provides a built-in variab&ime , which represents simulated time,

that is, a simulation of the actual time required for a machine to operate when it is
fabricated. Although the value 8fime in simulation has a direct relationship to the
physical time in the fabricated hardwagéme is not measured in seconds. Rather,
$time is a unitless integer. Often designers map one of these units into one nanosec-
ond, but this is arbitrary.

3.6.1 Multiple blocks
Verilog allows more than one behavioral block in a module. For example:

module two_blocks;
integer x,y;

initial
begin
a=1,
$display("a is one");
end

initial
begin
b=2;
$display('b is two");
end
endmodule

The abovesimulatesa system in whicla andb are simultaneously assigned their
respective values. This means, from a simulation stand@time is the same when

a is assigned one as when b is assigned two. (Since both assignments mgeur in
tial  blocks,$time is 0.) Note that this does not imply the sequence in which these
assignments (or the correspond@uisplay  statements) occur.
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3.6.2 Sequence versuitime

In software, we often confuse the two separate concepts of time and sequence. In Verilog,
it is possible for many statements to execute withtote advancing. The sequence

in which statements within one block execute is determined by the usual rules found in
other high-level languages. The sequence in which statements within different blocks
execute is something the designer cannot predict, but that Verilog will do consistently.
The advancing dftime is a different issue, discussed in section 3.7.

If you change thavire sto beeg s, a structural Verilog netlist is equivalent to several
always blocks, where eadiways block computes the result output by one gate. If
the design is correct, the sequence in which alwhys blocks execute at a particu-

lar $time is irrelevant, which helps explain why the order in which you instantiate
gates in structural Verilog is also irrelevant. With Verilog, you can simulate the parallel
actions of each gate or module that you instantiate, as well as the parallel actions of
each behavioral block you code.

3.6.3 Scheduling processes and deadlock

Like a multiprocessing operating system, a Verilog simulator schedules several pro-
cesses, one for each structural component or behavioral blocktifie variable

does not advance until the simulator has given each process that so desires an opportu-
nity to execute at th&ttime .

If you are familiar with operating systems concepts, such as semaphores, you will

recognize that this raises a question about how Verilog operates: what are the atomic
units of computation, or in other words, when does a process get interrupted by the
Verilog simulator?

The behavioral statements described earlier are uninterruptible. Although it is nearly
correct to model an exclusive OR with the following behavioral code:

module deadlock_the_simulator;
reg a,b,c;
always
c =a’b;
... other blocks ...
endmodule

the Verilog simulator would never allow the other blocks to execute because the block
computingc is not interruptible. Overcoming this problem requires an additional fea-
ture of Verilog, discussed in the next section.
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3.7 Time control

Behavioral Verilog may includéme controlstatements, whose purpose is to release
control back to the Verilog scheduler so that other processes may execute and also tell
the Verilog simulator at whatime the current process would like to be restarted.
There are three forms of time control that have different ways of telling the simulator
when to restart the current process: #, @veaitl .

3.7.1 # time control

When a statement is preceded by # followed by a number, the scheduler will not ex-
ecute the statement until the specified numbé&tiafe units have passed. Any other
process that desires to execute earlier thatihee specified by the # will execute
before the current process resumes. If we modify the first example from section 3.6:

module two_blocks_time_control;
integer x,y;

initial
begin
#4
a=1;
$display("a is one at $time=%d",$time);
end

initial
begin
#3
b=2;
$display("b is two at $time=%d",$time);
end

endmodule

the above will assign first to (at$time =3) and then t@a one unit offtime later.
The order in which these statements execute is unambiguous because the # places them
at a certain point istime .

There can be more than one # in a block. The following nonsense module illustrates
how the # works:
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module confusing;
integer a;
initial
begin
a=10;
#2 a=20;
#5 a = 30;
end
initial
begin
#1 a =40;
#3 a=50;
#4 a =60;
end
endmodule

In the above codey becomes 10 d@time 0, 40 atbtime 1, 20 atptime 2, 50 at
$time 4, 30 atbtime 7 and 60 adtime 8. The interaction of parallel blocks creates
a behavior much more complex than that of each individual block.

3.7.1.1 Using # in test code

One of the most important uses of # is to generate sequences of patterns at specific
$time s in test code to act as inputs to a machine. The # releases control from the test
code and gives the code that simulates the machine an opportunity to execute. Test
code without some kind of time control would be pointless because the machine being
tested would never execute.

For example, suppose we would like to test the budbin gate by stimulating it with
all four combinations on its inputs, and printing the observed truth table:
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module top;
integer ia, ib;
reg a,b;
wire ¢;

xor x1(c,a,b);

initial
begin
for (ia=0; ia<=1; ia = ia+1)
begin
a=ia;
for (ib=0; ib<=1; ib = ib + 1)
begin
b =ib;
#10 $display("a=%d b=%d c=%d",a,b,c);
end
end
end
endmodule

The first time througha andb are initialized to be 0 &time 0. When #10 executes
at$time 0, theinitial block relinquishes control, arxd is given the opportunity
to compute a new value (0"0=0) on the witeHaving completed everything sched-
uled at$time 0, the simulator advanc8me . The next thing scheduled to execute
is the$display  statement abtime 10. (The simulator does not waste real time
computing anything fogtime 2 through 9 since nothing changes during$tirme .)
The simulator prints out thada“=0b=0c=0 "at$time 10 and then goes through the
inner loop once again. Whilgtime is still 10,b becomes 1. The #10 relinquishes
control,x1 computes that is now 1 anétime advances. Thdisplay prints out
that“a=0b=1c=1 "at$time 20. The lasttwo lines of the truth table are printed out
in a similar fashion atime s 30 and 40.

3.7.1.2 Modeling combinational logic with #

Physical combinational logic devices, such as the exclusive OR gate, have propagation
delay. This means that a change in the input does not instantaneously get reflected in
the output as shown above, but instead it takes some amount of physical time for the
change to propagate through the gate. Propagation delay is a low-level detail of hard-
ware design that ultimately determines the speed of a system. Normally, we will want
to ignore propagation delay, but for a moment, let's consider how it can be modeled in

behavioral Verilog with the #.
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The behavioral exclusive OR example in section 3.6.3 deadlocks the simulator because
it does not have any time control. If we put some time control irathigys block

(say a propagation delay of #1), the simulator will have an opportunity to schedule the
test code instead of deadlocking insidealweays block:

module top;
integer ia,ib;
reg a,b;
reg c;

always #1
c =a’b;

initial
begin
for (ia=0; ia<=1; ia = ia+1)
begin
a=ia;
for (ib=0; ib<=1; ib =ib + 1)
begin
b =ib;
#10 $display("a=%d b=%d c=%d",a,b,c);
end
end
$finish;
end
endmodule

As in the last example, andb are initialized to be 0 &time 0. When #10 executes
at$time 0, theinitial block relinquishes control, which gives thigvays loop

an opportunity to execute. The first thing thataleays block does is to execute #1,
which relinquishes control untitime 1. Since no other block wants to execute at
$time 1, execution of thalways block resumes &time 1, and it computes a new
value (0"0=0) for the reg. Because this is aalways block, it loops back to the #1.
Since no other block wants to executéstiine 2, execution of thalways block
resumes abtime 2, and it recomputes the same value for thecrdwat it just com-
puted atbtime 1. Thealways block continues to waste real time by unnecessarily
recomputing the same value all the way ufittme 9.

Finally, the$display  statement executes®iime 10. The test code prints o@=0

b=0 c=0 " and goes through its inner loop once again. Wéilme s still 10,b
becomes 1. The #10 relinquishes control, andliiays block will have another ten
chances to compute thatis now 1. The remaining lines of the truth table are printed
out in a similar fashion.
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There is an equivalent structural netlist notation foalvays block with # time
control. The following behavioral and structural code do similar thingtirime :

reg c; wire c;
always #2 xor #2 x2(c,a,b);
c =a’b;

Both model an exclusive OR gate with a propagation delay of two utitsva . On
many (but not all) implementations of Verilog simulators, the structural version is more
efficient from a real-time standpoint. This is discussed in greater detail in chapter 6.

3.7.1.3 Generating the system clock with # for simulation

Registers and controllers are driven by some kind of a clock signal. One way to gener-
ate such a signal is to haveiaitial block give the clock signal an initial value,

and amalways block that toggles the clock back and forth:

reg sysclk;
initial
sysclk = 0;

always #50
sysclk = ~sysclk;

The above generates a system clock sigyaglk , with a period of 100 units of
$time .

3.7.1.4 Ordering processes without advancisiyne

It is permissible to use a delay of #0. This causes the current process to relinquish
control to other processes that need to execute at the chtiraeat . After the other
processes have relinquished control, but be$tiree advances, the current process

will resume. This kind of time control can be used to enforce an order on processes
whose execution would otherwise be unpredictable. For example, the following is
algorithmically the same as the first example in 3.18.1s @ssigned first, thea), but

both assignments occur&tme O0:
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module two_blocks_time_control;
integer x,y;
initial
begin
#0
a=1,
$display("a is one at $time=%d",$time);
end
initial
begin
b=2;
$display("b is two at $time=%d",$time);
end
endmodule

3.7.2 @ time control

When an @ precedes a statement, the scheduler will not execute the statement that
follows until the event described by the @ occurs. There are several different kinds of
events that can be specified after the @, as shown below:

@ (expression )

@ (expression or expression or...)
@(posedge onebit )

@(negedge onebit )

@ event

When there is a single expression in parenthesis, the @ waits until one or more bit(s) in
the result of theexpression  change. As long as the result of #vepression

stays the same, the block in which the @ occurs will remain suspended. When multiple
expressions are separateddny, the @ waits until one or more bit(s) in the result of
any of theexpression s change. The wormk is not the same as the operator |.

In the abovegnebit s single-bitwire orreg (declared without the square bracket).
Whenposedge occurs in the parenthesis, the @ waits umtébit changes from a
Otoal. Whenegedge occursinthe parenthesis, the @ waits umtébit changes
from a 1 to a 0. The following mean the same thing:

reg a,b,c; reg a,b,c;
@(c) a=b; @ (posedge c or negedge c) a=b;

An event is a special kind of Verilog variable, which will be discussed later.
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3.7.2.1 Efficient behavioral modeling of combinational

logic with @
Although you can model combinational logic behaviorally using just the #, this is not
an efficient thing to do from a simulation real-time standpoint. (Using # for combina-
tional logic is also inappropriate for synthesis.) As illustrated in section 3.7.1.2, the
always block has to reexecute many times without computing anything new. Although
physical hardware gates are continuously recomputing the same result in this fashion,
it is wasteful to have a general-purpose computer spend real time simulating this. It
would be better to compute the correct result once and wait until the next time the result
changes.

How do we know when the output changes? Recall that perfect combinational logic
(i.e., with no propagation delay) by definition changes its output wheaayeuf its
input(s) change So, we need the Verilog notation that allows us to suspend execution
until any of the inputs of the logic change:

module top;
integer ia,ib;
reg a,b;
reg c;

always @(a or b)
c =a’b;

initial
begin
for (ia=0; ia<=1; ia = ia+1)
begin
a=ia;
for (ib=0; ib<=1; ib = ib + 1)
begin
b =ib;
#10 $display("a=%d b=%d c=%d",a,b,c);
end
end
$finish;
end
endmodule
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At the beginning, both thmmitial and thealways block start execution. Since
neithera norb have changed yet, tladways block suspends. The first time through
the loops in thénitial block,a andb are initialized to be 0 &ime 0. When #10
executes d@time 0, theinitial block relinquishes control, and thlvays block

is given an opportunity to do something. Siacendb both changed &time 0, the

@ does not suspend, but instead allowsallsays block to compute a new value
(0"0=0) for thereg c. Thealways block loops back to the @. Since there is no way
thata orb can change anymore&time 0, the simulator advanc&ime . The next

thing scheduled to execute is thdisplay  statement abtime 10. (Like the ex-
ample in section 3.7.1.1, but unlike the example in section 3.7.1.2, the simulator does
not waste real time computing anything $dime 1 through 9 since nothing changes
during that$time .) The simulator prints out thaa“0b=0c=0 " at$time 10, and

then goes through the inner loop once again. Wtitee is still 10,b becomes 1.

The #10 relinquishes control, and #ilevays block has an opportunity to do some-
thing. Sinceb just changed (thougd did not change), the @ does not suspendcand
isnow 1. After$time advances, thidisplay prints out thatd=0b=1c=1 " at

$time 20. The last two lines of the truth table are printed out in a similar fashion at
$time s 30 and 40.

Since this is a model of combinational logic, it is very importantherty input to the
logic be listed after the @ We refer to this list of inputs to the physical gate as the
sensitivity list

3.7.2.2 Modeling synchronous registers

Most synchronous registers that we deal with use rising edge clocks. Using @ with
posedge is the easiest way to model such devices. For example, consider an enabled
register whose input (of any bus widthdis and whose output (of similar width as

din ) isdout . At the rising edge of the clock, whah is 1, the value presented on

din will be loaded. Otherwisdout remains the same. Assumidig, dout, Id

andsysclk  are taken care of properly elsewhere in the module, the behavioral code
to model such an enabled register is:

always @(posedge sysclk)
if (Id)
dout = din;

Similar Verilog code can be written for a counter register thathasld , andcnt
signals:

90 Verilog Digital Computer Design: Algorithms into Hardware



always @(posedge sysclk)
begin
if (clr)
dout = 0;
else
if (Id)
dout = din;
else
begin
if (cnt)
dout = dout + 1;
end
end

Note that the nesting df statements indicates the priority of the commands. If a
controller sends this counter a commandito andcnt at the same time, the counter

will ignore thecnt command. At angtime when thisalways block executes, only

one action (clearing, loading, counting or holding) occurs. Of course, improper nesting
of if statements could yield code whose behavior would be impossible with physical
hardware.

3.7.2.3 Modeling synchronous logic controllers

Most controllers are triggered by the rising edge of the system clock. It is convenient to
useposedge to model such devices. For example, assumingstbpt , speed and
sysclk  have been dealt with properly elsewhere in the module, the second ASM
chart in section 2.1.1.2 could be modeled as:

always
begin
@ (posedge sysclk) //this models state GREEN
stop = 0;
speed = 3;
@(posedge sysclk) //this models state YELLOW
stop = 1;
speed = 1;
@(posedge sysclk) //this models state RED
stop = 1;
speed = 0;
end

There are several things to note about the above code. First, the indentation is used only
to promote readability. Assuming the code for generagisglk  given in section
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3.7.1.3,thestop=0 andspeed =3 statements execute®time 50, 350, 650,

... because there is no time control among them. The indentation simply highlights the
fact that these two statements execute atomically, as a unit, without being interrupted
by the simulator.

The second thing to note is that the = in Verilog is justfaware assignment state-

ment. (The variable is modified at tii¢ime the statement executes. The variable will
retain the new value until modified again.) This is different than how we use = in ASM
chart notation. (The command signal is a function of the present state. The command
signal does not retain the new value after the rising edge of the system clock but instead
returns to its default value.) Another way of saying this is that there are no default
values in standard Verilog variables as there are for ASM chart commands. Despite the
distinction between Verilog and ASM chart notation, we can model an ASM chart in
Verilog by fully specifying every command output in every state. For those states where
a command is not mentioned in an ASM chart, one simply codes a Verilog assignment
statement that stores the default value into the Verilog variable corresponding to the
missing ASM chart command. Teop=0 andspeed=0 statements above were not
shown in the original ASM chart but are required for the Verilog code to model what
the hardware would actually do.

The third thing is the names of the states are not yet included in the Verilog code. (The
comments are of course ignored by Verilog.) Eventually, we will find a way of includ-
ing meaningful state names in the actual code.

The fourth thing is that this ASM chart does not have any RTN (i.e., it is at the mixed
stage). We will need an additional Verilog notation to model ASM charts that use RTN.
This notation is discussed in section 3.8.

3.7.2.4 @ for debugging display
@ can also be used for causing the Verilog simulator to print debugging output that
shows what happens as actions unfold in the simulation. For example,

always @(a or b or c)
$display("a=%b b=%b c=%b at $time=%d",a,b,c,$time);

The above block would eliminate the need for the designer to worry about putting
$display statements in the test code or in the code for the machine being tested.

With clocked systems, it is often convenient to display information shortly after each
rising edge of the clock:
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always @(posedge sysclk)
#20 $display("stop=%b speed=%b at $time=%d",
stop,speed,$time);

3.7.3 wait

Thewait statement is a form of time control that is quite different than # or @. The
wait statement stands by itself. It does not modify the statement which follows in the
way that @ and # do (i.e., there must be a semicolon afterdibte statement). The

wait statement is used primarily in test code. It is not normally used to model hard-
ware devices in the way @ and # are used. The syntax faaihe statement is:

wait(condition);

Thewait statement suspends the current process. The current process will resume
when the condition becomes true. If the condition is already true, the current process
will resume withouthtime advancing.

For example, suppose we want to exhaustively test one of the slow division machines
described in chapter 2. The amount of time the machine takes depends on how big the
resultis. Furthermore, different ASM charts described in chapter 2 take different amounts
of $time . Therefore, the best approach is to userd¢laely signal produced by the
machine:

module top;
reg pb;
integer x,y;
wire [11:0] quotient;
wire sysclk;

initial
begin

pb=0;

x=0;

y=0;

#250;

@(posedge sysclk);

while (x<=4095)

begin
for (y=1; y<=4095; y = y+1)
begin

@(posedge sysclk);
pb =1,
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Continued

@(posedge sysclk);
pb =0;
@(posedge sysclk);
wait(ready);
@(posedge sysclk);
if (x/ly === quotient)
S$display(“ok™);

else
S$display(“error x=%d y=%d x/y=%d quotient=%d",
Xy, xly,quotient);
end
X=x+1;
end
$stop;
end
endmodule

This test code (based on the nested loops given in section 3.4) embodies the assump-
tions we made in section 2.2.1. The first two @s in the loop produgd thelse that

lasts exactly one clock cycle. The third @ makes sure that the machine has enough time
to respond (and makeady 0). Thewait(ready) keeps the test code synchro-
nized to the division machine, so that the test code is not feeding numbers to the divi-
sion machine too rapidly. The fourth @ makes sure the machine will spend the required
time in state IDLE, before testing the next number.

The ellipsis shows where the code for the actual division machine was omitted in the
above. Thequotient  is produced by this machine which is not shown here. The
design of this code will be discussed in the next chapter.

3.8 Assignment with time control

The # and @ time control, discussed in sections 3.7.1 and 3.7.2, precede a statement.
These forms of time control delay execution of the following statement until the speci-
fied $time . There are two special kinds of assignment statefnéms have time
controlinside the assignment statementThese two forms are knownlasckingand
non-blocking procedural assignment

5 Assignment with time control is not accepted by some commercial synthesis tools but is accepted by all
Verilog simulators. Since there are problems with intra-assignment delay (section 3.8.2.1), some authors
recommend against its use, but when used as recommended later in this chapter (section 3.8.2.2), it becomes
a powerful tool. Chapter 7 explains a preprocessor that allows all synthesis tools to accept the use proposed
in this book.
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3.8.1 Blocking procedural assignment

The syntax for blocking procedural assignment has the # or @ notation (whose syntax
is described in sections 3.7.1 and 3.7.2) after the = but before the expression. For ex-
ample, three common forms of this are:

var =# delay expression ;
var = @(posedge onebit ) expression ;
var = @(negedge onebit ) expression

Other variations are also legal. What distinguishes this from a normal instantaneous
assignment is that the expression is evaluated dbtiime the statement first ex-
ecutes, but the variable does not change until after the specified delay. For example,
assumingtemp is areg that is not used elsewhere in the code andtdmp is
declared to be the same widthaaandb, the following two fragments of code mean

the same thing:

initial
initial begin
begin
temp = b;

a = @(posedge sysclk) b; @(posedge sysclk) a = temp;

end end

Blocking procedural assignment is almost what we need to model an ASM chart with
RTN. The one problem with it, as its name implies, is that it blocks the current process
from continuing to execute additional statements at the $time . We will not use
blocking procedural assignment for this reason.

3.8.2 Non-blocking procedural assignment

The syntax for a non-blocking procedural assignment is identical to a blocking proce-
dural assignment, except the assignment statement is indicated with <= instead of =.
This should be easy to remember, because it reminds us ef thetation in ASM
charts. For example, the most common form of the non-blocking assignment used in
later chapters is:

var <= @(posedge onebit ) expression ;
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Typically, onebit is thesysclk signal mentioned in section 3.7.1.3. Although other
forms are legal, the abo@(posedge onebit ) form of the non-blocking assign-

ment is the one we use in almost every case-fan ASM charts’

The expression is evaluated at$tiene the statement first executes and further state-
ments execute at that saisime , but the variable does not change until after the
specified delay. For example, assunti@gp is areg thatis not used elsewhere in the
left-hand code and thegmp is declared to be the same widttaandb, the following

two fragments of code mean nearly the same thing:

always @(posedge sysclk)

#0 a = temp;
initial initial
begin begin

a <= @(posedge sysclk) b; temp = b;

end end

Note that, all by itself, the effect of the non-blocking assignment is like having a paral-
lel always block to store int@. An advantage of the <= notation is that you do not
have to code a separati@vays block for each register.

A subtle detail is that the right-haativays block is the last thing to execute (#0) at
a given$time . Similarly, the <= causes threg to change only after every other
block (including the one with the <= has finished execution. This subtle detail causes
a problem, which is discussed in the next section, and which is solved in section 3.8.2.2.

3.8.2.1 Problem with <= for RTN for simulation

An obvious approach to translating RTN from an ASM chart into behavioral Verilog is
just to put <= for each- in the ASM chart. For example, assumstgp , speed ,
count andsysclk are taken care of properly elsewhere, one might think that the
ASM chart from section 2.1.1.3 could be translated into Verilog as:

5 The exceptions are when the left-hand side of ¢heis a memory being changed every clock cycle, in

which case@(negedge onebit ) is appropriate, as explained in section 6.5.2, and for post-synthesis
behavorial modeling of logic equations, in which case # is appropriate, as explained in section 11.3.3.
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always
begin
@(posedge sysclk) /lthis models state GREEN
stop = 0;
speed = 3;

@(posedge sysclk) /lthis models state YELLOW
stop = 1;
speed = 1;
count <= @(posedge sysclk) count + 1;

@(posedge sysclk) /lthis models state RED
stop = 1;
speed = 0;
count <= @(posedge sysclk) count + 2;
end

However, when one runs this code on a Verilog simulator, the following incorrect result
is produced (assuming the debuggahgays block shown in section 3.7.2.4):

stop=0 speed=11 count=000 at $time= 70
stop=1 speed=01 count=000 at $time= 170
stop=1 speed=00 count=001 at $time= 270
stop=0 speed=11 count=010 at $time= 370
stop=1 speed=01 count=010 at $time= 470
stop=1 speed=00 count=011 at $time= 570

Recall from section 2.1.1.3 that®iime 370,count should be three instead of two.

The underlying cause of this error is the subtle detail mentioned above: The <= causes
thereg to change only after every other block (including the one with the <=) has
finished execution.

The above Verilog starts to execute the statements for state YELL Giivhat 150.
The last of these statements evaluatemt+1l at$time 150 and schedules the stor-
age of the result. Since count is still 3'b00Gttne 150, the result scheduled to be
stored at the end dtime 250 is 3'b001. The@(posedge sysclk) that starts
state RED causes the always block to suspend&imie 250. The problem shown
above occurs ditime 250 because the assignment initiated by the $timae 150

will be the last thing that occurs $time 250. Prior to the assignment, the process
will resume and execute the three statements, inclugingt <= @(posedge

sysclk) count + 2 . Sincecount is still 3'b000, this <= schedules 3'b010 to be
assigned atime 350, which is not what happens in an ASM chart. As soon as the
assignment of 3'b010 has been scheduletiate 250, 3'b001 will be stored into
count (as a result of the first <=).
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3.8.2.2 Proper use of <= for RTN in simulation

To overcome the problem described in the last section, you need to use a non-zero
delay after eacl@(posedge sysclk) that denotes a rectangle of the ASM chart.

For example, here is the complete Verilog code to model (in a primitive way) the ASM
chart from section 2.1.1.3:

module top;
reg stop;
reg [1:0] speed;
reg sysclk;
reg [2:0] count;

initial
sysclk = 0;
always #50

sysclk = ~sysclk;

always
begin
@ (posedge sysclk) #1 /lthis models state GREEN
stop = 0;
speed = 3;
@ (posedge sysclk) #1 //this models state YELLOW
stop = 1,
speed = 1;
count <= @(posedge sysclk) count + 1;

@ (posedge sysclk) #1 /lthis models state RED
stop = 1,
speed = 0;
count <= @(posedge sysclk) count + 2;
end

always @(posedge sysclk)
#20 $display("stop=%b speed=%b count=%b at $time=%d",
stop,speed,count,$time);

initial
begin
count = 0;
#600 S$finish;
end
endmodule

Let's analyze the reason why each block is required in this module. Theifiast
block is required to giveysclk a value other than 1’'bx &time 0. The next block
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togglessysclk  so that the clock period is 100.9§sclk  were not initialized at
$time 0, it would stayl’bx forever ¢1'bx is1'bx ).

The only new thing in thalways block that models the ASM chart is the addition of
#1 after eact@(posedge sysclk) . Thealways block that follows it displays
stop , speed andcount during each state.

The test code in the finaiitial block simply initializes count to be 3'b000. (In a
real machine, this would occur in a state of the ASM, but instead here it is part of the
test code for the purposes of illustration only.) The test code schedbfiessh

system task to be called®time 600. This is required because #Hiways blocks

would otherwise tell the simulator to go on forever.

With the #1 after each @, the Verilog simulator produces the following correct output:

stop=0 speed=11 count=000 at $time= 70
stop=1 speed=01 count=000 at $time= 170
stop=1 speed=00 count=001 at $time= 270
stop=0 speed=11 count=011 at $time= 370
stop=1 speed=01 count=011 at $time= 470
stop=1 speed=00 count=100 at $time= 570

3.8.2.3 Translatinggoto -less ASMs to behavioral Verilog

This book concentrates on several design techniques that all begin by expressing an
ASM with behavioral Verilog. Since Verilog is goto -less language, only certain
kinds of ASMs can be translated in this fashion. Chapters 5 and 7 explain how arbitrary
ASMs can be translated into Verilog, but this section will concentrate only on ASMs
that adhere to this highly desiralgeto- less style.

3.8.2.3.1 Implicit versus explicit style

The approach of expressing a state machine with high-level statemenif (e

while ) is known asmplicit stylebecause the next state of the machine is described
implicitly through the use o (posedge sysclk) within the statements of an
always block. Implicit style is the opposite of tlegplicit styletable (illustrated in

section 2.4.1) that requires the designer to say what state the machine goes to under all
possible circumstances.

Experienced hardware designers who are new to Verilog may find the implicit style
approach confusing because it requires thinking about a state machine in a different
way. The implicit style is much more like software concepts, such as the distinction
betweerif andwhile . On the other hand, experienced software designers may also
find this approach difficult at first because the timing relationship between <= and
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decisions in Verilog is different than in conventional software languages. The follow-
ing sections go through a series of examples that illustrate some typical kinds of ASM
constructs and how they translate into implicit style Verilog.

3.8.2.3.2 Identifying the infinite loop

Unlike software, all ASMs have at least one infinite loop. Implicit style behavioral
Verilog is defined by aalways block. Many times thialways block can also serve

to implement the infinite loop of the ASM. In the following ASM, the transitions from
states FIRST, SECOND, THIRD and FOURTH are implicit. The designer does not
have to say anything about their next states. The transition from FIFTH to FIRST oc-
curs because of tr@ways :

FIRST
a1
)
SECOND
b<—a
v )
THIRD
a-—>b
]
FOURTH
b-—4
)
FIFTH
a<—>5

Figure 3.2 Every ASM has an infinite loop.

Inside thealways , there is a one to one mapping of rectangles @{posedge
sysclk) statements. In this example, the ASM has five states, sdwhgs uses
five @(posedge sysclk)

module top;
//Following are actual hardware registers of ASM
reg [11:0] a,b;

/[Following is NOT a hardware register
reg sysclk;

/IThe following always block models actual hardware
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Continued

always

begin
@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1; // state SECOND
b <= @(posedge sysclk) a;
@ (posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
@ (posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
@ (posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;

end

/[Following initial and always blocks do not correspond to
/I hardware. Instead they are test code that shows what
/I happens when the above ASM executes

always #50 sysclk = ~sysclk;
always @(posedge sysclk) #20
$display(“%d a=%d b=%d “, $time, a, b);

initial
begin
sysclk = 0;
#1400 $stop;
end
endmodule

The above is slightly more primitive than what will be used in later chapters, but the
emphasis of this example is to show how an ASM translates into Verilog. In the above,
there are threalways blocks, but only the first one corresponds to hardware. The
other twoalways blocks and thénitial block are necessary for simulation (in
later chapters these other blocks will be moved to other modules).

3.8.2.3.3 Recognizing else

Most ASMs have decisions. Decisions in implicit Verilog are described either with the
if statement (possibly followed leyse ) or with thewhile statement. For hardware
designers without extensive software experience, determining whethiér thethe
while is appropriate for a particular decision can seem confusing at first.

The following ASM is an example where tifie else construct is appropriate:
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FIRST ¢
a<—1
v
SECOND
b<—a
0 1
FOURTH ¥ THIRDJv
b<~—4 a-—b
| |
v
FIFTH
a<—>5

Figure 3-3. ASM corresponding tb else .

For brevity, only thelways block that corresponds to the actual hardware is shown:

always
begin
@(posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@(posedge sysclk) #1; I/l state SECOND
b <= @(posedge sysclk) a;
if (@==1)
begin
@(posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
end
else
begin
@(posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
end
@(posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;
end

Theif else is appropriate here because only one of the states (THIRD or FOURTH)
will execute. Becausa is one in state SECOND, state THIRD will execute. In the
following very similar Verilog, state FOURTH rather than state THIRD will execute:
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always
begin
@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1;
b <= @(posedge sysclk) a;
if al=1)
begin
@(posedge sysclk) #1; /I state THIRD

a <= @(posedge sysclk) b;
end

else
begin
@(posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
end
@ (posedge sysclk) #1;

a <= @(posedge sysclk) 5;
end

/I state SECOND

/I state FIFTH

3.8.2.3.4 Recognizing a single alternative
Often, it is appropriate to omit tledse , as in the following ASM:

FIRST a1
¥
SECOND
b<—a
A
0 1
THIRD a<b
Y
¥
FOURTH 1
b<—4
- |
v
FIFTH
a<—>5

Figure 3-4. ASM without/se .
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which translates to the following Verilog:

always
begin
@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1; // state SECOND
b <= @(posedge sysclk) a;
if(@==1)
begin
@ (posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
@ (posedge sysclk) #1; /l state FOURTH
b <= @(posedge sysclk) 4;
end
@ (posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;
end

In the above, both state THIRD and state FOURTH will execute beaaissene in

state SECOND. The following very similar Verilog skips directly from state SECOND
to state FIFTH:

always
begin
@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1; // state SECOND
b <= @(posedge sysclk) a;
if al=1)
begin
@ (posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
@ (posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
end
@ (posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;
end

3.8.2.3.5 Recognizingthile loops

The following two ASMs describe the same hardware. The first of the following two
ASMs is very similar to the one in section 3.8.2.3.4, except that state FOURTH does
not necessarily go to state FIFTH . Instead, state FOURTH goes to a decision which
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determines whether to go to state THIRD or state FIFTH. The second of the following
two ASMs is a much less desirable way to describe the identical hardware. It is undesir-
able because thee==1 test is duplicated; however, its meaning is exactly the same as
the first of the following two ASMs:

| <
FIRST a1
v
SECOND
b-—a
T< <
v
< — > 1
a==
A
0
THIRD|
v 4
FOURTH
b<—4
A
FIFTH
a<—>5
Figure 3-5. ASM witlwhile .
FIRST | )
a-—1
v
SECOND
b-—a
v
0 THIRD
a<~—b
v \
FOURTH )
b<—4
v
=
) 0
FIFTH
a<—>5
v

Figure 3-6. Equivalent to figure 3-5.
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The reason the first of the ASMs is preferred is because it is more obvious that it trans-
lates into avhile loop in Verilog:

always
begin
@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1; // state SECOND
b <= @(posedge sysclk) a;
while (a==1)
begin
@(posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
@(posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
end
@ (posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;
end

In fact, the only syntactic difference between the above Verilog and the Verilog in sec-
tion 3.8.2.3.4 is that the woitl has been changedudile . The advantage of look-

ing at this particular ASM aswehile loop is that the decisiar=1 is shared by both

state SECOND and state FOURTH. With titgle loop, the designer does not have

to worry that the decision is actually part of two states. Many practical algorithms that
produce useful results (as illustrated in chapter 2) demand a loop of this style. The
while in Verilog makes this easy.

3.8.2.3.6 Recognizintprever

Sometimes machines need initialization states that execute only once. Since synthesis
tools only accept behavioral Verilog defined withivays blocks, such ASMs still

begin with the keywordlways . However, the looping action of tldways is not
pertinent. (If the designer only wanted to simulate the madhitia| would work

just as well aglways , but ultimately the synthesis tool will demaaidvays .)

In order to describe the infinite loop that exists beyond the initialization states, the
designer must uderever . For example, consider the following ASM:
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FIRST

a<—1
"
SECOND
b<—a
0 1
THIRD a~b
A
v
FOURTH
b<—4
3 o ¥
v
FIFTH
a<—>5

Figure 3-7. ASM needinfprever.

It is almost identical to the one in section 3.8.2.3.4, except that state FIFTH forms an
infinite loop to state SECOND instead of going to state FIRST. The corresponding
Verilog implements this usinfprever

always
begin
@(posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
forever
begin
@(posedge sysclk) #1; // state SECOND
b <= @(posedge sysclk) a;
if (@==1)
begin
@(posedge sysclk) #1; // state THIRD
a <= @(posedge sysclk) b;
@(posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
end
@(posedge sysclk) #1; /I state FIFTH
a <= @(posedge sysclk) 5;
end
end

Verilog Hardware Description Language 107



3.8.2.3.7 Translating into aifi at the bottom oforever

The following two ASMs are equivalent. Many designers would think the one on the
left is more natural because it describes a loop involving only state THIRD. As long as
a==1, the machine stays in state THIRD. The noteworthy thing about this machine is
that state THIRD also forms the beginning of a separate infinite loop. (Such an infinite
loop might be described with atways or in this case forever .) Because of this,

it is preferred to think of this ASM as &n at the bottom of éorever , as illustrated

by the ASM on the right:

FIRST a1 FIRST a1
: l
FOURTH b2
FOURTH b—2
v v N
THIRD
a~b . THIRD a—b

FIFTH

F”L;

Figure 3-8. Two ways to draiff at the bottom oforever

The ASM on the right tests@!=1 to see whether to leave the loop involving only
state THIRD and proceed to state FIFTH. The reason the ASM on the right is preferred
is that its translation into Verilog is obvious:
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always
begin
@ (posedge sysclk) #1; Il state FIRST
a <= @(posedge sysclk) 1;
@ (posedge sysclk) #1; // state FOURTH
b <= @(posedge sysclk) 4;
forever
begin
@ (posedge sysclk) #1; /I state THIRD
a <= @(posedge sysclk) b;
if (a!l=1)
begin
@(posedge sysclk) #1; // state FIFTH
a <= @(posedge sysclk) 5;
end
end
end

In software, arif never implements a loop. This is also true in Verilog of an isolated

if , but the combination of @h at the bottom oforever oralways has the effect

of nesting a non-infinite loop inside an infinite loop. It is foeever  or always

that forms the looping action, not tie. This example illustrates a kind of implicit
behavioral Verilog that sometimes causes novice Verilog designers confusion. It is sug-
gested that the reader should fully appreciate this example before proceeding to later
chapters. Designers need to be careful not to coiffuseith while

3.9 Tasks and functions

In conventional software programming languages, it is common for a programmer to

use functions and procedures (known as void functions in C) to break an algorithm

apart into manageable pieces. There are two main motivations for using functions and
procedures: they make the top-down design of a complex algorithm easier, and they
sometimes allow reuse of the same code. Verilog provides tasks (which are like proce-
dures) and functions, which can be called from behavioral code.

3.9.1 Tasks
The syntax for a task definition is:
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task name

input arguments ;
output arguments
inout arguments ;

declarations ;
begin

statement

end
endtask

This task definition must occur inside a module. The task is usually intended to be
called only byinitial blocks,always blocks and other tasks within that module.
Tasks may have any behavioral statements, including time control.

Verilog lets the designer choose the order in whichrthet |, output andinout
definitions are given. (The order shown above is just one possibility.) The order in
whichinput ,output andinout definitions occur is based on the calling sequence
desired by the designer. The sequence in which the formal arguments are listed in some
combination ofnput ,output and/orinout definitions determines how the actual
arguments are bound to the formal definitions when the task is called.

The purpose of aimput argument is to send information from the calling code into
the task by value. Amput argument may include a width (which is equivalent to a
wire of that width) or it may be given a type iofeger orreal in a separate
declaration. Arinput argument may not be declared as@ .

The purpose of anutput argument is to send a result from the task to the calling
code by reference. Aautput argument must be declared aseg , integer  or
real in a separate declaration.

An inout definition combines the roles ofput
ment must be declared asegq , integer  orreal

andoutput . Aninout argu-
in a separate declaration.

3.9.1.1 Example task
Consider the following nonsense code:
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integer count,sum,prod;
initial
begin
sum = 0;
count=1;

sum = sum + count;
prod = sum * count;
count = count + 2;

$display(sum,prod);

sum = sum + count;
prod = sum * count;
count = count + 3;

$display(sum,prod);

sum = sum + count;
prod = sum * count;
count = count + 5;

$display(sum,prod);

sum = sum + count;
prod = sum * count;
count = count + 7;

$display(sum,prod);

$display(sum,prod,count);
end

After initializing sum andcount , there is a great similarity in the following four
groups (each composed of four statements). Using a task allovmttals  block
to be shortened:

integer count,sum,prod,;
initial
begin
sum = 0;
count=1;
example(sum,prod,count,2);
example(sum,prod,count,3);
example(sum,prod,count,5);
example(sum,prod,count,7);
$display(sum,prod,count);
end
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The definition of the taskxample is:

task example;
inout sum_arg; //1st positional argument
output prod_arg; //2nd positional argument
inout count_arg; //3rd positional argument
input numb_arg; //4th positional argument

integer count_arg,numb_arg,sum_arg,prod_arg;

begin
sum_arg = sum_arg + count_arg;
prod_arg = sum_arg * count_arg;
count_arg = count_arg + numb_arg;
$display(sum_arg,prod_arg);
end
endtask

Because the formatout sum_arg is defined first, it corresponds to the actuah
in theinitial block. Similarly, the formabutput prod_arg corresponds to
prod , and the formainout count_arg corresponds toount . In order to pass
different numbers each time &xample , the formalnumb_arg is defined to be
input . The order in which the arguments are declared (in this case wiithefer
type) is irrelevant. Th8display statements produce the following:

1 1
4 12
10 60
21 231
21 231 18

3.9.1.2 enter_new_state  task

The translation of the ASM chart from section 2.1.1.3 into Verilog given in section
3.8.2.2 is correct but could be improved in two ways. First, this translation did not
include state names as part of the Verilog code (they were only in the comments).
Second, this translation did not automatically provide default values for states where
command signals were not mentioned, as occurs in ASM chart notation.

To overcome both of these limitations, we will define a task, which is arbitrarily given
the nameenter_new_state . The purpose of this task is to do things that occur
whenever the machine enters any state. This includes storimyéstnt_state a
representation of a state (which is passed as an input argtinerdtate ), doing

the #1 (which is legal in a task) to allow the <= to work properly and giving default
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values to the command outputs. In order to use this task, the designer needs to define
several arbitrary bit patterns for the state names, definprésent_state as a
reg and indicate the number of bits in thiesent_state

‘define NUM_STATE_BITS 2

‘define GREEN 2'b00
‘define YELLOW 2'b01
‘define RED 2'p10

reg [NUM_STATE_BITS-1:0] present_state;

Thealways block that implements the ASM chart is similar to the one given in sec-
tion 3.8.2.2:

always
begin
@ (posedge sysclk) enter_new_state(‘GREEN);
speed = 3;

@ (posedge sysclk) enter_new_state('YELLOW);
stop = 1;
speed = 1;
count <= @(posedge sysclk) count + 1;

@ (posedge sysclk) enter_new_state(‘RED);
stop = 1;
count <= @(posedge sysclk) count + 2;
end

The only differences are that the state names are passed as arguments to
enter_new_state , and default values do not have to be mentioned. For example,
state GREEN uses the default value Ostop , and state RED uses the default value

0 forspeed .

The task that accomplishes these things for this particular ASM is:
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task enter_new_state;
input [NUM_STATE_BITS-1:0] this_state;
begin
present_state = this_state;
#1 stop = 0;
speed = 0;
end
endtask

Even though default values are assigned for every state, since no time control occurs in
this task after the assignment of default values, those states where non-default values
are assigned work correctly. For example, assume the machine enters state GREEN at
$time 50. At thatbtime , present_state will be assigned 2'b00. Aitime 51,

stop andspeed will assigned their defaults of 0, but since there is nho more time
control, thealways block which called on the task is not interruptable. At the same
$time 51speed changes to 3. Any other module concerned atjpesd at$time

51 would only observe a change to a value of 3. To understand this, we need to distin-
guish between sequence &time . Because the task was called, two changes oc-
curred tospeed in sequence, but since they happened at the $ame , the outside

world can only observe the last change. This creates exactly the effect we want. We are
now ready to model ASM charts that do practical things with behavioral Verilog. Ex-
amples of translating ASM charts into Verilog using tasks like this are given in chapter
4,

3.9.2 Functions
The syntax for a function is similar to a task:

function type name
input arguments ;

declarations ;
begin
statement

name= expression ;
end
endfunction

except only input arguments are allowed. In the function definitigge is either
integer , real or a bit width defined in square brackets. The statement(s) in a
function never include any time control The name of the function must be assigned
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the result to be returned (like the syntax of Pascal). These restrictions on functions
exist so that every use of a function could, in theory, be synthesized as combinational
logic.

3.9.2.1 Real function example

Verilog does not provide built-in trigonometric functions, but it is possible to define a
function that approximates such a function using a polynomial:

function real sine;
input x;
real x;
real y,y2,y3,y5,y7;
begin
y = x*2/3.14159;
y2 =y,
y3 = y*y2;
y5 =y3*y2;
y7 =y5*y2;
sine = 1.570794*y - 0.261799*y3 +
0.0130899*y5 - 0.000311665*y7;
end
endfunction

Such a function might be useful if a designer needs to test the Verilog model of a
machine, such as a math coprocessor, that implements an ASM to approximate tran-
scendental functions.

3.9.2.2 Using a function to model combinational logic

A more common use of a function in Verilog is as a behavioral way to describe combi-
national logic. For example, rather than being described by the logic gates given in
section 2.5, a half-adder can also be described by a truth table:

inputs Othput

s3]
o

C S

PP OO
P OPFr o
= O OO
OoOr O
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Such a table can be written in Verilog as a function defined withsa statement.

Since the result of the function is composed of more than one bit, the function is better
documented by using local variablesands in this example), which are concatenated

to form the result:

function [1:0] half_add;
input a,b;
reg c,s; /llocal for documentation

begin
case ({a,b})
2'b00: begin
c=0;
s=0;
end
2'b01: begin
c=0;
s=1;
end
2'b10: begin
c=0;
s=1;
end
2'b11: begin
c=1;
s=0;
end
default:begin
c =1bx;
s = 1'bx;
end
endcase
half_add ={c,s};
end
endfunction

So half_add(0,0) returns 2'b00 andhalf_add(1,1) returns 2'b10. Both
half_add(1,0) andhalf_add(0,1) return 2'b01. All other possibilities, such
ashalf_add(1'bx,0) return 2’bx. In order to use this function to model the com-
binational logic of a half-adder, the designer would definalaays block with @
time control as explained in section 3.7.2.1:
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reg C,S;

éiways @(A or B)
{C,S} = half_add(A,B);

The actual argument A in ttedways block is bound to the formalin half_add ,

and the actual argument B is bound to the foimalhe localsc ands are concat-
enated to form a two-bit result (hence the [1:0] declaration for the function.) This two
bit result is stored in the two-bit concatenajonS} .

3.10 Structural Verilog, modules and ports

The preceding sections have covered many behavioral and a few structural (built-in
gate), features of Verilog. This section discusses the most central aspect of Verilog:
how the designer can define and instantiate Verilog modules to achieve hierarchical
design.

Verilog code is composed of one or more modules. Each module is eitieteael
moduleor aninstantiated moduleA top-level module is one (like all the earlier ex-
amples in this chapter) which is not instantiated elsewhere in the source code. There is
only one copy of a top-level module. The definition of a top-level module is the same as
the code that executes. Tiegy s andwire s in a top-level module are unique.

An instantiated module, on the other hand, is a unique executable copy of the defini-
tion. There may be many such copies. The definition is a “blueprint” for each of these
instances. For example, section 2.5 illustrates an adder that needs three instances of a
half-adder. It is only necessary to define the half-adder once. It can be instantiated as
many times as required. Each instance of an instantiated module has its own copy of
thereg s andwire s specified by the designer. For example, the value stored in a
particularreg in one instance of a module need not be the same as the value stored in
thereg of the same name in another instance of that module.

Instantiated modules should have ports that allow outside connections with each in-
stance. Itis this interconnection (i.e., structure) with the system external to the instance
that gives each instance its unique role in the total system. Normally, each instance is
internally identical to other instances derived from the same module definition, and

how an instance is connected within the system gives that instance its characteristics.

The syntax for a module definition with ports is:
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module name( portl , port2 ,...);
input ... ;
output ... ;
inout ... ;
declarations ;
structural instance ;

behavioral instance ;
tasks
functions

endmodule

An example of sstructural instance is given using built-in gates in section
3.5.1. Examples of designer supplied (rather than buiitinytural instances

will be given later in section 3.10.6. Behavioral instance is either aral-

ways orinitial block, as explained in section 3.4. (Tasks and functions are local to
a module, and may be called byehavioral  instance , but are not by them-
selvesbehavioral instances .) Thedeclarations include specifying either

wire orreg of an appropriate width for each port listed in parentheses, as well as any
local variables used internally within the module.

The order in which ports appear in the parentheses on the first line of the module
definition is the order which matters elsewhere when this module is instantiated. Every
one of the ports listed in the parentheses must be defined as one of the following:
input , output orinout . Unlike tasks, the order in which the ports of a module
appears in thénput , output orinout definitions themselves is irrelevant. Al-
though there is some vague similarity, the meaning of the wgpds , output and

inout for a module is quite different than for a task. The designer makes the choice
among these three alternatives based on the direction of information flow relative to the
module in question. When making this decision, the designer looks at the system from
the viewpoint of this one module.

3.10.1 input ports

Aninput port is one through which information comes into the module in question
from the outside world. Amput port must be declared within the module to have a
size, or else Verilog will treat theput  port as a one-biire , which is often incor-
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rect. There are two ways to declare the size: eitheware a of some size (regardless
of whether the module usesbehavioral  instance or astructural in-
stance ) or with theinput definition”

Failure to declare aimput port as avire will cause it to be treated as a single-bit
wire .

3.10.2 output ports

Anoutput port is one through which information goes out of the module in question
to the outside world. When the module in question ugeshavioral  instance

to produce theutput port, theoutput portmust be declared asrg of some
size. When the module in question usestractural instance , theoutput

port should be declared asvae of some size. In other words, whether to declare an
output portto be avire orreg depends on whether it is generated by structural or
behavioral code within the module in question.

3.10.3 inout ports

Aninout portis one thatis used to send information both directions. The advantage
of aninout port is that the same port can do two separate things (at different times).
The Verilog code for using anout  port is more complex than for simpfgut  and
output ports. Aninout port corresponds to a hardware device knowntasstate

buffer. The details ofnout ports and tristate buffers are discussed in appendix E.

3.10.4 Historical analogy: pins versus ports

Consider the analogy that “ports are like the doors of a building.” For buildings like a
store in a shopping center, some doors are labeled “IN,” meaning that customers who
wish to enter the store in question should go through that door. Those who are finished
shopping leave through a different door labeled “OUT.” It would be possible to look at
the world from the viewpoint of the parking lot, but it is more convenient to look at
things relative to the store in question (since there may be many stores in the shopping
center to choose from).

There is another analogy for ports: ports are like the pins on an integrated circuit.
Some pins are inputs and some pins are outputs. This is a very good analogy, but itis a
little dangerous because when a large design is fabricated by a modern silicon foundry,
most of the ports in the design do not correspond to a physical pin on the final inte-
grated circuit.

To understand this pin analogy, let’s digress for a moment and look at the history of
hierarchical design and integrated circuit technology. Before the mid-1960s, all digital

tomputers were built usirdjscrete electronic devicgsuch as relays, vacuum tubes or
“Some synthesis tools require thatitheut  definition have the size.
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transistors). It takes several such devices, wired together by hand in a certain structure,
to make a gate, and of course, as we have seen in section 2.5, it takes many such gates
to make anything remotely useful. In the early 1960’s, photographic technologies be-
came practical to mass-produce entire circuits composed of several devices on a wafer
of semiconductor material (typically silicon). The wafer is sliced into “chips,” which

are mounted in epoxy (or similar material) with metal pins connecting the circuitry on
the chip to the outside. There are several standard sizes for the number and placement
of pins. For example, one of the oldest and smallest configurations is the 16-Pin Dual
Inline Package (DIP). It is a rectangle with seven data pins on each side, and no pins on
the top or bottom. (Two pins are reserved for power and ground.) A notch or dot at the
top of the chip indicates where pin one is.

Designers in the 1960s and 1970s were limited by the number of devices that fit onto
the chip and also by the number of pins allowed in these standard sizes. Realizing the
power of hierarchical design, these designers built chips that contain standard building
blocks that fit within the number of pins available. An example is a four-bit counter in
one chip, TTL part number 74xx163, which is still widely used. Whenever designers
needed a four-bit counter, they could simply specify a 74xx163, without worrying about
its internal details. This, of course, is hierarchical design and provides the same mental
simplification as instantiating a module. Physically, the pins of the 74xx163 chip would
be soldered into the final circuit.

The relationship between these early integrated circuits and hierarchical design is not
perfect, hence the danger of saying ports are like pins. If a design needs one 13-bit
counter, a designer in the 1970s would have to specify that four 74xx163s be soldered
into the final circuit to act as a single counter. There is an interconnection between
these four chips so that they collectively count properly. From a hierarchical stand-
point, we want to see only one black box, with a 13-bit bus, but this counter is fabri-
cated as four 74xx163s wired together. Some of the physical pins (connected to another
one of the 74xx163s) have nothing to do with the ports of a 13-bit counter.

With modern silicon fabrication technologies, the limitations on the number of devices
on a chip have been eased, but the limitations on physical pins have become even more
severe. Although chips can contain millions of gates, the number of pins allowed is
seldom more than a few hundred. Hierarchical design should be driven by the problem
being solved (which is the fundamental principle of all top-down design) and not by the
limitations (such as pins) of the technology used. Every physical pin on a chip is (part
of) a Verilog port, but not every Verilog port necessarily gets fabricated as a physical
pin(s). Even so, thanalogyis a good one: ports alike pins.
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3.10.5 Example of a module defined with a behavioral instance
Section 2.5 defines an adder several ways. The simplest way to explain what an adder
does is to describe it behaviorally. Since an adder is combinational logic, we can use
the @ time control technique discussed in section 3.7.2.1 to model its behavior. How-
ever, since an adder is used in a larger structure, we should maealge block

that models the adder’s behavior part of a module definition. Those partslif) that

are physical inputs to the fabricated adder wilifpat ports to this module, and are
exactly the variables listed in the sensitivity list. The port that is a physical output
(sum) is, of course, defined to be antput port. Since this module computasm

with behavioral codesum is declared to berag . (There are no “registers” in combi-
national logic, but a Verilogeg is used in a behavioral model of combinational logic.
Areg is not a“register” as long as the sensitivity list has all the inputs listed.) As in the
example of section 2.5, the widthsaofindb are two bits each, and the widthsofm

is three bits:

module adder(sum,a,b);
input [1:0] a,b;
output [2:0] sum;
wire [1:0] a,b;
reg [2:0] sum;

always @(a or b)
sum=a+b;
endmodule

The widths shown on input and output definitions are optional for simulation pur-
poses.

To exhaustively test this small adder, test code similar to section 3.7.2.1 enumerates all
possible combinations af andb:

8The width will not be shown on later examples in this chapter, although describing the vifgthtonand
output definitions would be legal in simulation. The width might be required to overcome the limitations
of some commercial simulation tools.
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module top;
integer ia,ib;
reg [1:0] a,b;
wire [2:0] sum;

adder adderl(sum,a,b);

initial
begin
for (ia=0; ia<=3; ia = ia+1)
begin
a=ia;
for (ib=0; ib<=3;ib = ib + 1)
begin
b =ib;
#1 $display(“a=%d b=%d sum=%d",a,b,sum);
end
end
end
endmodule

The important thing in this top-level test module is #dder (the name of the mod-
ule definition) is instantiated itop with the namedderl . In the top-level module,

a andb arereg s because, within this modul®y ), a andb are supplied by behav-
ioral code. On the other hareim is supplied byadderl , and sdop declaresum

to be awire . The syntax for instantiating a user defined module is similar to instanti-
ating a built-in gate. In this example, the losai of top corresponds to the output
port (coincidentally namesum) of an instance of modubalder . If the names (such
assum) in moduleadder were changed to other names (suctotd ), the module
would work the same:

module adder(total,alpha,beta);
input alpha,beta;
output total;
wire [1:0] alpha,beta;
reg [2:0] total,

always @(alpha or beta)
total = alpha + beta;
endmodule
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It is the position within the parentheses, and not the names, that®mattar the
module is instantiated in the test code.

3.10.6 Example of a module defined with a structural instance

Of course, in hierarchical design, we need a structural definition of the module. As
described in section 2.5, the modatiler can be defined in terms of instantiation of

an instance of &alf_adder  (which we will callhal) and an instance of a
full_adder (which we will callfal ):

module adder(sum,a,b);
input a,b;
output sum;
wire [1:0] a,b;
wire [2:0] sum;

wire ¢;
half_adder hal(c,sum[0],a[0],b[0]);

full_adder fal(sum[2],sum[1],a[1],b[1],c);
endmodule

Since the adder is defined with tvetructural instances  (namedhal and

fal ), all of the ports, including theutput port,sum, arewire s. The local wire

sends the carry from the half-adder to the full-adder. Of course, we need identical test
code as in the last example, and we also need module definitioiudl_fadder
andhalf_adder

3.10.7 More examples of behavioral and structural instances

Even thougthalf_adder  andfull_adder are instantiated structurally in section
3.10.6, they can be defined either behaviorally or structurally. For example, a behav-
ioral definition of these modules is:

% Verilog provides an alternative syntax, described in chapter 11, that allows the name, rather than the posi-
tion, to determine how the module is instantiated.
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module half_adder(c,s,a,b);
input a,b;
wire a,b;
output c,s;
reg c,s;

always @(a or b)
{c,s} = a+b;
endmodule

module full_adder(cout,s,a,b,cin);
input a,b,cin;
wire a,b,cin;
output cout,s;
reg cout,s;

always @(a or b or cin)
{cout,s} = a+b+cin;
endmodule

Once again, notice that the outputsraig s. Concatenation is used on the left of the =
to make the definition of the module simgleout,s}  is a two-bitreg capable of
dealing with the largest possible numb&b(1 ) produced by+b+cin .

An alternative would be to define thalf_adder  andfull_adder modules with
structural instances , which means all outputs angre s:

module half_adder(c,s,a,b);
input a,b;
wire a,b;
output c,s;
wire c,S;

xor x1(s,a,b);
and al(c,a,b);
endmodule

module full_adder(cout,s,a,b,cin);
input a,b,cin;
wire a,b,cin;
output cout,s;
wire cout,s;
wire coutl,cout2,stemp;

half_adder ha2(coutl,stemp,a,b);

half_adder ha3(cout2,s,cin,stemp);

or ol(cout,coutl,cout?);
endmodule
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There are two instances bélf adder (ha2 andha3). The only difference be-
tween these two instances is how they are connected Withiadder . There are

three local wiresgoutl , cout2 andstemp ) that allow internal interconnection within
the module.

At this point, we have reduced the problem down to Verilog primitive gates (
or, xor ) whose behavior is built into Verilog.

3.10.8 Hierarchical names

Although ports are intended to be the way in which modules communicate with each
other in a properly functioning system, Verilog provides a way for one module to ac-
cess the internal parts of another module. Conventional high-level languages, like C
and Pascal, hawscope ruleghat absolutely prohibit certain kinds of access to local
information. Verilog is completely different in this regard. The philosophy of Verilog
for accessing variables is very similar the philosophy of the NT or UNIX operating
systems for accessing files: if you know the path to a file (within subdirectories), you
can access the file. Analogously in Verilog: if you know the path to a variable (within
modules), you can access the variable.

For example, using the definition afilder given in section 3.10.6, and the instance
adderl shown in the test code of section 3.1@dgerl has a local wire that is not
accessible to the outside world. The following stateriretiite test codewould allow
the designer to observe this wire, even though there is no port that @utputs

$display(adderl.c);

A name, such aadderl.c is known as ierarchical nameor path

The following statement allows the designer to obseow#2 from the test code:

$display(adderl.fal.cout2);

which happens to be the same as:

$display(adderl.fal.ha3.c);

The parts of a hierarchical name are separated by periods. Every part of a hierarchical
name, except the last, is the name of an instance of a module. The names of the corre-
sponding module definitionadder , full_adder andhalf_adder inthe above
examplenever appear in a hierarchical name.
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3.10.9 Data structures

The term “structure” has three distinct meanings in computer technology. Elsewhere in
this book, “structure” takes on its hardware meaning: the interconnection of modules
using wires. But you have probably heard of the other two uses of this word: “struc-
tured programming,” and “data structures.” The concept of “structured programming”
is a purely behavioral software concept which is closely related to what we call goto-
less programming (see section 2.1.4). “Data structures” are software objects that allow
programmers to solve complex problems in a more natural way.

The period notation used in Verilog for hierarchical names is reminiscent of the nota-
tion used in conventional high-level languages for accessing components of a “data
structure” ecord in Pascalstruct in C, andclass in C++). In fact, you can
create such software “data structures” in Verilog by defining a portless module that has
only data, but that is intended to be instantiated. Such a portless but instantiated module
is worthless for hardware description, but is identical to a conventional software “data
structure.” Such a module has no behavioral instances or structural instances. For ex-
ample, a data structure could be defined to contain payroll information about an em-
ployee:

module payroll;
reg [7:0] id;
reg [5:0] hours;
reg [3:0] rate;

endmodule

Suppose we have two employege andjane . Each employee has a unique in-
stance of this module:

payroll joe();
payroll jane();

initial

begin
joe.id=254;
joe.hours=40;
joe.rate=14;
jane.id=255;
jane.hours=63;
jane.rate=15;

end

The empty parentheses are a syntactic requirement of Verilog. In this example, the
fields ofjane contain the largest possible values.
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Data structures usually have a limited set of operations that manipulate the fields of the
data. For example, thours andrate fields can be combined to display the corre-
sponding total pay. This operation is defined as a local task of the module. However,
since there are no behavioral instances in this module, this task sits idle until it is called
from the outside (using a hierarchical name):

module payroll;
reg [7:0] id;
reg [5:0] hours;
reg [3:0] rate;

task display_pay;
integer pay; //local
begin
if (hours>40)
pay = 40*rate + (hours-40)*rate*3/2;
else
pay = hours*rate;
$display("employee %d earns %d",id,pay);
end
endtask
endmodule

module top;
payroll joe();
payroll jane();
initial
begin
joe.id=254;
joe.hours=40;
joe.rate=14;
joe.display_pay;
jane.id=255;
jane.hours=63;
jane.rate=15;
jane.display_pay;
end
endmodule

This is very close to the software concemlgect-oriented programminig languages
like C++, except the current version of Verilog lacks the inheritance feature found in
C++.
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Data structures are a powerful use of hierarchical names, but they are somewhat afield
from the central focus of this book: hardware structures. Application of hierarchical
names are useful in test code, and so it is important to understand them. Also, the above
example helps illustrate what instantiation really means in Verilog.

3.10.10 Parameters

Verilog modules allow the definition of what are known as parameters. These are con-
stants that can be different for each instance. For example, suppose you would like to
define a module behaviorally that models an enabled register of arbitrary width:

module enabled_register(dout, din, Id, sysclk);
parameter WIDTH = 1;
input din,ld,sysclk;
output dout;
wire [WIDTH-1:0] din;
reg [WIDTH-1:0] dout;
wire Id,sysclk;

always @(posedge sysclk)
if (Id)
dout = din;
endmodule

By convention, we use capital letters for parameters, but this is not a requirement. Note
that parameters do not have a backquote preceding them.

If you instantiate this module without specifying a constant, the default given in the
parameter statement (in this example, 1) will be used asiHBTH and so the
instanceR1 will be one bit wide:

wire I[dR1,sysclk;
wire R1dout,R1din;
enabled_register R1(R1dout,R1din,IdR1,sysclk);

To specify a non-default constant, the syntax is a # followed by a list of constants in
parentheses. Since there is only one parameter in this example, there can be only one
constant in the parentheses. For example, to instantiate a 12-bit regiR&2for

wire I[dR2,sysclk;
wire [11:0] R12dout,R12din;
enabled_register #(12) R12(R12dout,R12din,ldR12,sysclk);
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Verilog requires that the width ofwaire that attaches to asutput port match the
reg declaration within the module. In this examgf,2dout is a wire twelve bits
wide, the parametaiIDTHin the instanc®12 is twelve, and the corresponding out-
put portdout , is declared agg[WIDTH-1:0] , which is the same asg[11:0]

Since there is only one constant in the parentheses above, it is legal to omit the paren-
theses:

enabled_register #12 R12(R12dout,R12din,|dR12,sysclk);

Sometimes, you need more than one constant in the definition of a module. For ex-
ample, a combinational multiplier has two input buses, whose widths need not be the
same:

module multiplier(prod,a,b);
parameter WIDTHA=1,WIDTHB=1,
output prod;
input a,b;
reg [WIDTHA+WIDTHB-1:0] prod;
wire [WIDTHA-1:0] a;
wire [WIDTHB-1:0] b;

always @(a or b)
prod = a*b;
endmodule

Here is an example of instantiating this:

wire [5:0] hours;
wire [3:0] rate;
wire [9:0] pay;

multiplier #(6,4) m1(pay,hours,rate);

3.11 Conclusion

Modules are the basic feature of the Verilog hardware description language. Modules
are either top-level or instantiated. Top-level modules are typically used for test code.
Instantiated modules have ports, which can be defined to beigfibier , output or

inout . Constants in modules may be defined with gheameter statement. A
module is either defined with Behavioral  instance (always or initial

Verilog Hardware Description Language 129



block(s) or with astructural instance  (built-in gates or instantiation of other
designer-provided modules). Behavioral and structural instances may be mixed in the
same module.

Variables produced by behavioral code, including outputs from the module, are de-
clared to beeg s. Behavioral modules have the usual high-level statements, such as
if andwhile , as well astime control (#, @ awdit ) that indicate when the process
can be suspended and resumed.$thme variable simulates the passage of time in
the fabricated hardware. Verilog makes a distinction between algorithmic sequence and
the passage @time . The most important forms of time control are # followed by a
constant, which is used for generating the clock and test ved(spsedge

sysclk) , which is used to model controllers and registers; and @ followed by a
sensitivity list, which is used for combinational logic. Verilog provides the non-block-
ing assignment statement, which is ideal for translating ASM charts that use RTN into
behavioral Verilog. Verilog also provides tasks and functions, which like similar fea-
tures in conventional high-level languages, simplify coding.

Structural modules have a simple syntax. They may instantiate other designer-provided
modules to achieve hierarchical design. They may also instantiate built-in gates. The
syntax for both kinds of instantiation is identical. All variables in a structural module,
including outputs, arwire s.

Hierarchical names allow access to tasks and variables from other modules. Use of
hierarchical names is usually limited to test code.

The next chapter uses the features of Verilog described in this chapter to express the
three stages (pure behavioral, mixed and pure structural) of the design process for the
childish division machine designed manually in chapter 2. The advantage of using Verilog

at each of these stages is that the designer can simulate each stage to be sure it is correct
before going on to the next stage. Also, the final Verilog code can be synthesized into a
working piece of hardware, without the designer having to toil manually to produce a
flattened circuit diagram and netlist.

3.12 Further reading

LeE, Javes M., Verilog QuickstartKluwer, Norwell, MA, 1997. Gives several examples
of implicit style.

PaniTkAR, S.,Verilog HDL: A Guide to Digital Design and Synthe$tsentice Hall
PTR, Upper Saddle River, NJ, 1996. An excellent reference for all aspects of Verilog.
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SwitH, DoucLas J.,HDL Chip Design: A Practical Guide for Designing, Synthesizing,
and Simulating ASICs and FPGAs Using VHDL or Verildgone Publications, Madi-
son, AL, 1997. A Rosetta stone between Verilog and VHDL.

STERNHEIM, ELIEZER, RAJVIR SiIngH and YaTin Trivepi, Digital Design with Verilog HDL,
Automata Publishing, San Jose, CA, 1990. Has several case studies of using Verilog.

THomas, Donalb E. and Riue R. Moorsy, The Verilog Hardware Description Lan-
guage,Third edition, Kluwer, Norwell, MA., 1996. Explains how a simulator works
internally.

3.13 Exercises

3-1. Design behavioral Verilog for a two-input 3-bit wide mux using the technique
described in section 3.7.2.1. The port list for this module should be:

module mux2(i0, i1, sel, out);

3-2. Design a structural Verilog module(x2) equivalent to problem 3-1 using only
instances oénd, or , not andbuf .

3-3. Modify the solution to problem 3-1 to use a parameter n®héd that allows
instantiation of an arbitrary width f@@ ,i1 andout as explained in section 3.10.10.
For example, the following instance of this device would be useful in the architecture
drawn in section 2.3.1:

wire muxctrl;
wire [11:0] x,y,muxbus;
mux2 #12 mx(x,y,muxctrl,muxbus);

3-4.Given the instancen(x) of the moduleriux2) shown in problem 3-3, what hierar-
chical names are equivalenttpy, muxctrl andmuxbus?

3-5. Design behavioral Verilog for combinational incrementor and decrementor mod-
ules using the technique described in section 3.7.2.1. Use a parameterStafmed
that allows instantiation of an arbitrary width for the ports as explained in section 3.10.10.
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3-6. Design behavioral Verilog for an up/down counter (section D.8) using the tech-
nigue described in section 3.7.2.2. The port list for this module should be:

module updown_register(din,dout,ld,up,count,clk);

3-7. Modify the solutions to problem 3-6 to use a parameter n&@t& that allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10.

3-8. Design behavioral Verilog for a simple D-type register (section D.5) using the
technique described in section 3.7.2.2. Use a parameter ratdgdthat allows
instantiation of an arbitrary width for the ports as explained in section 3.10.10. The port
list for this module should be:

module simpled_register(din,dout,clk);

3-9.Design a structural Verilog modulegdown_register ) equivalent to problem
3-7 using only instances of the modules defined in problems 3-3, 3-5 and 3-8.

3-10. For each of the ASM charts given in problem 2-10, translate to implicit style
Verilog using non-blocking assignment fer and@(posedge sysclk)#1 for

each rectangle, as explained in section 3.8.2.3.1. As in that example, there should be
onealways that models the hardware, oakvays for the$display and an

always andinitial forsysclk . Compare the result of simulation with the manually
produced timing diagram of problem 2-10.

3-11. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM chart of section 3.8.2.3.3. Show the valugsoélb in the first
twelve clock cycles, and label each clock cycle to indicate which state the machine is
in. Next, run theoriginal implicit style Verilog code equivalent to the ASM and make

a printout of the .log file. On this printout, write the name of the state that the machine
is in during each clock cycle. The manually created timing diagram should agree with
the Verilog .log file. Finally, modify the following:

@ (posedge sysclk) #1; /I state FIRST
a <= @(posedge sysclk) 1;
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to become:

@ (posedge sysclk) #1; /I state FIRST
a=1;

Run the modified Verilog code and make a printout of its .log file. On this printout,
circle the differences, if any, that exist between the correct timing diagram and the .log
file for the modified Verilog. In no more than three sentences, explain why there are or
are not any differences between = and <=.

3-12. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.4. Show the valuesaofdb in the first twelve

clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run theoriginal implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
Jog file. Finally, modify the code to change tifie to awhile . Run the modified
Verilog code and make a printout of its .log file. On this printout, circle the differences,
if any, that exist between the correct timing diagram and the .log file for the modified
Verilog. In no more than three sentences, explain why there are or are not any differ-
ences betweeifi andwhile .

3-13. Without using a Verilog simulator, give a timing diagram for the machine de-
scribed by the ASM of section 3.8.2.3.5. Show the valuesaofdb in the first twelve

clock cycles, and label each clock cycle to indicate which state the machine is in. Next,
run theoriginal implicit style Verilog code equivalent to the ASM and make a printout
of the .log file. On this printout write the name of the state that the machine is in during
each clock cycle. The manually created timing diagram should agree with the Verilog
Jog file. Finally, modify the code to eliminate all #1s. Run the modified Verilog code
and make a printout of its .log file. On this printout, circle the differences, if any, that
exist between the correct timing diagram and the .log file for the modified Verilog. In
no more than three sentences, explain why there are or are not any differences between
using and omitting #1s.
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