

(CONTINUED)

The INEORMATION CAPACITY

According to Shannon [1948], there are 2 (two) factors related to the

information capacity:

- Bandwidth
- Channel Quality (Signal to Noise Ratio,

S/N atau SNR)

Engineers of Communication

- Claude E. Shannon (The Information Theory)
- Norbert Wiener (Cybernetics)

The Communication Model

[1948] Garde E. Shannon, "A Mathematical Theory of Communication" (a technical notes)

/home/rhiza/Desktop/shannon.pdf

[1949] Claude E. Shannon and Warren Weaver, "The Mathematical Theory of Communication" (popular version)

Communication Model Shannon Weaver [1949], simplex mode INFORMATION SOURCE TRANSMITTER RECEIVED RECEIVER DESTINATION

The Information Capacity (Bit Rate) Shannon

Weaver [1949], simplex mode

Fig. 1 Schematic diagram of a general communication system.

The Shannon [1948] formula to compute the Information Capacity:

Information Capacity [bps] = (Bandwidthi [Hertz])* ²log (1 + S/N)

Schweber, [1996], page 16

The Information Capacity (Bit Rate)

The Shannon [1948] formula to compute the Information Capacity:

Information Capacity [bps] = (Bandwidthi [Hertz])* 2log (1 + S/N)

Schweber, [1996], page 16

Bit Rate = BW * $^{2}log (1 + S/N)$

- Bit Rate (The Information Capacity): The amount of information transmitted in a unit of time [bit per second, bps] through a communication channel
- <u>BW (Bandwidth)</u>: The spectrum of signals transmittable in the channel [Hertz, getaran per detik, cycles per second, cps], the difference between the highest freuency and the lowest frequency
- > <u>S/N (Signal to Noise ratio)</u>: the quality of the channel in terms of the ratio of the transmitted signal power and the noise power

