
Computer programming

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Programming" redirects here. For other uses, see Programming (disambiguation).
Software development process

Activities and steps
Requirements · Specification

Architecture · Design
Implementation · Testing
Deployment · Maintenance

Models
Agile · Cleanroom · DSDM

Iterative · RAD · RUP · Spiral
Waterfall · XP · Scrum · Lean

V-Model · FDD
Supporting disciplines

Configuration management
Documentation

Quality assurance (SQA)
Project management

User experience design
Tools

Compiler · Debugger · Profiler
GUI designer

Integrated development environment

Computer programming (often shortened to programming or coding) is the process of writing,
testing, debugging/troubleshooting, and maintaining the source code of computer programs. This
source code is written in a programming language. The code may be a modification of an existing
source or something completely new. The purpose of programming is to create a program that
exhibits a certain desired behaviour (customization). The process of writing source code often
requires expertise in many different subjects, including knowledge of the application domain,
specialized algorithms and formal logic.

Contents
•
• 1 Overview
• 2 History of programming
• 3 Modern programming

• 3.1 Quality requirements
• 3.2 Algorithmic complexity
• 3.3 Methodologies
• 3.4 Measuring language usage

file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#column-one
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Measuring_language_usage
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Methodologies
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Algorithmic_complexity
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Quality_requirements
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Modern_programming
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#History_of_programming
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Overview
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Graphical_user_interface_builder
http://en.wikipedia.org/wiki/Performance_analysis
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/User_experience_design
http://en.wikipedia.org/wiki/Software_project_management
http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Software_documentation
http://en.wikipedia.org/wiki/Software_configuration_management
http://en.wikipedia.org/wiki/Feature_Driven_Development
http://en.wikipedia.org/wiki/V-Model_(software_development)
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://en.wikipedia.org/wiki/Cleanroom_Software_Engineering
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Functional_specification
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Programming_(disambiguation)
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#searchInput

• 3.5 Debugging
• 4 Programming languages
• 5 Programmers
• 6 References
• 7 Further reading
• 8 See also
• 9. External links

Overview
Within software engineering, programming (the implementation) is regarded as one phase in a
software development process.

There is an ongoing debate on the extent to which the writing of programs is an art, a craft or an
engineering discipline.[1] Good programming is generally considered to be the measured
application of all three, with the goal of producing an efficient and evolvable software solution (the
criteria for "efficient" and "evolvable" vary considerably). The discipline differs from many other
technical professions in that programmers generally do not need to be licensed or pass any
standardized (or governmentally regulated) certification tests in order to call themselves
"programmers" or even "software engineers." However, representing oneself as a "Professional
Software Engineer" without a license from an accredited institution is illegal in many parts of the
world.[citation needed]

Another ongoing debate is the extent to which the programming language used in writing computer
programs affects the form that the final program takes. This debate is analogous to that surrounding
the Sapir-Whorf hypothesis [2] in linguistics, that postulates that a particular language's nature
influences the habitual thought of its speakers. Different language patterns yield different patterns
of thought. This idea challenges the possibility of representing the world perfectly with language,
because it acknowledges that the mechanisms of any language condition the thoughts of its speaker
community.

Said another way, programming is the craft of transforming requirements into something that a
computer can execute.

History of programming
See also: History of programming languages

Wired plug board for an IBM 402 Accounting Machine.

The concept of devices that operate following a pre-defined set of instructions traces back to Greek
Mythology, notably Hephaestus and his mechanical servants[3]. The Antikythera mechanism was a
calculator utilizing gears of various sizes and configuration to determine its operation. The earliest
known programmable machines (machines whose behavior can be controlled and predicted with a
set of instructions) were a Muslim Scientist Al-Jazari's programmable Automata in 1206.[4] One of
Al-Jazari's robots was originally a boat with four automatic musicians that floated on a lake to
entertain guests at royal drinking parties. Programming this mechanism's behavior meant placing
pegs and cams into a wooden drum at specific locations. These would then bump into little levers

file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#See_also
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Further_reading
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#References
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Programmers
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Programming_languages
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#Debugging
http://en.wikipedia.org/wiki/Lever
http://en.wikipedia.org/wiki/Cam
http://en.wikipedia.org/wiki/Peg
http://en.wikipedia.org/wiki/Mechanism
http://en.wikipedia.org/wiki/Robot
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-3
http://en.wikipedia.org/wiki/Humanoid_robot
http://en.wikipedia.org/wiki/Al-Jazari
http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Antikythera_mechanism
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-2
http://en.wikipedia.org/wiki/Hephaestus
http://en.wikipedia.org/wiki/Greek_Mythology
http://en.wikipedia.org/wiki/Greek_Mythology
http://en.wikipedia.org/wiki/IBM_402_Accounting_Machine
http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Linguistics
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-1
http://en.wikipedia.org/wiki/Linguistic_relativity
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Professional_Engineer
http://en.wikipedia.org/wiki/Professional_Engineer
http://en.wikipedia.org/wiki/Programmer
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-0
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Craft
http://en.wikipedia.org/wiki/Art
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/File:IBM402plugboard.Shrigley.wireside.jpg

that operate a percussion instrument. The output of this device was a small drummer playing
various rhythms and drum patterns.[5] [6] Another sophisticated programmable machine by Al-
Jazari was the castle clock, notable for its concept of variables which the operator could manipulate
as necessary (i.e. the length of day and night). The Jacquard Loom, which Joseph Marie Jacquard
developed in 1801, uses a series of pasteboard cards with holes punched in them. The hole pattern
represented the pattern that the loom had to follow in weaving cloth. The loom could produce
entirely different weaves using different sets of cards. Charles Babbage adopted the use of punched
cards around 1830 to control his Analytical Engine. The synthesis of numerical calculation,
predetermined operation and output, along with a way to organize and input instructions in a
manner relatively easy for humans to conceive and produce, led to the modern development of
computer programming. Development of computer programming accelerated through the Industrial
Revolution.

In the late 1880s Herman Hollerith invented the recording of data on a medium that could then be
read by a machine. Prior uses of machine readable media, above, had been for control, not data.
"After some initial trials with paper tape, he settled on punched cards..."[7] To process these
punched cards, first known as "Hollerith cards" he invented the tabulator, and the key punch
machines. These three inventions were the foundation of the modern information processing
industry. In 1896 he founded the Tabulating Machine Company (which later became the core of
IBM). The addition of a control panel to his 1906 Type I Tabulator allowed it to do different jobs
without having to be physically rebuilt. By the late 1940s there were a variety of plug-board
programmable machines, called unit record equipment, to perform data processing tasks (card
reading). Early computer programmers used plug-boards for the variety of complex calculations
requested of the newly invented machines.

Data and instructions could be stored on external punch cards, which were kept in order and
arranged in program decks.

The invention of the Von Neumann architecture allowed computer programs to be stored in
computer memory. Early programs had to be painstakingly crafted using the instructions of the
particular machine, often in binary notation. Every model of computer would be likely to need
different instructions to do the same task. Later assembly languages were developed that let the
programmer specify each instruction in a text format, entering abbreviations for each operation code
instead of a number and specifying addresses in symbolic form (e.g. ADD X, TOTAL). In 1954
Fortran was invented, being the first high level programming language to have a functional
implementation.[8] [9] It allowed programmers to specify calculations by entering a formula directly
(e.g. Y = X*2 + 5*X + 9). The program text, or source, is converted into machine instructions using
a special program called a compiler. Many other languages were developed, including some for
commercial programming, such as COBOL. Programs were mostly still entered using punch cards
or paper tape. (See computer programming in the punch card era). By the late 1960s, data storage
devices and computer terminals became inexpensive enough so programs could be created by
typing directly into the computers. Text editors were developed that allowed changes and

http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Computer_terminal
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Data_storage_device
http://en.wikipedia.org/wiki/Computer_programming_in_the_punch_card_era
http://en.wikipedia.org/wiki/Paper_tape
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Compiler
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-8
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-7
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Punch_cards
http://en.wikipedia.org/wiki/Unit_record_equipment
http://en.wikipedia.org/wiki/Control_panel_(computer)
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Tabulating_Machine_Company
http://en.wikipedia.org/wiki/Key_punch
http://en.wikipedia.org/wiki/Tabulating_machine
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-6
http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Herman_Hollerith
http://en.wikipedia.org/wiki/Industrial_Revolution
http://en.wikipedia.org/wiki/Industrial_Revolution
http://en.wikipedia.org/wiki/Analytical_Engine
http://en.wikipedia.org/wiki/Punched_cards
http://en.wikipedia.org/wiki/Punched_cards
http://en.wikipedia.org/wiki/Charles_Babbage
http://en.wikipedia.org/wiki/Pasteboard
http://en.wikipedia.org/wiki/Jacquard_Loom
http://en.wikipedia.org/wiki/Variable_(programming)
http://en.wikipedia.org/wiki/Castle_clock
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-5
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-4
http://en.wikipedia.org/wiki/Percussion_instrument
http://en.wikipedia.org/wiki/File:PunchCardDecks.agr.jpg

corrections to be made much more easily than with punch cards.

As time has progressed, computers have made giant leaps in the area of processing power. This has
brought about newer programming languages that are more abstracted from the underlying
hardware. Although these high-level languages usually incur greater overhead, the increase in speed
of modern computers has made the use of these languages much more practical than in the past.
These increasingly abstracted languages typically are easier to learn and allow the programmer to
develop applications much more efficiently and with less code. However, high-level languages are
still impractical for many programs, such as those where low-level hardware control is necessary or
where processing speed is at a premium.

Throughout the second half of the twentieth century, programming was an attractive career in most
developed countries. Some forms of programming have been increasingly subject to offshore
outsourcing (importing software and services from other countries, usually at a lower wage),
making programming career decisions in developed countries more complicated, while increasing
economic opportunities in less developed areas. It is unclear how far this trend will continue and
how deeply it will impact programmer wages and opportunities.

Modern programming

Quality requirements

Whatever the approach to software development may be, the final program must satisfy some
fundamental properties. The following five properties are among the most relevant:

• Efficiency /performance: the amount of system resources a program consumes (processor
time, memory space, slow devices such as disks, network bandwidth and to some extent
even user interaction): the less, the better. This also includes correct disposal of some
resources, such as cleaning up temporary files and lack of memory leaks.

• Reliability : how often the results of a program are correct. This depends on conceptual
correctness of algorithms, and minimization of programming mistakes, such as mistakes in
resource management (e.g. buffer overflows and race conditions) and logic errors (such as
division by zero).

• Robustness : how well a program anticipates problems not due to programmer error. This
includes situations such as incorrect, inappropriate or corrupt data, unavailability of needed
resources such as memory, operating system services and network connections, and user
error.

• Usability : the ergonomics of a program: the ease with which a person can use the program
for its intended purpose, or in some cases even unanticipated purposes. Such issues can
make or break its success even regardless of other issues. This involves a wide range of
textual, graphical and sometimes hardware elements that improve the clarity, intuitiveness,
cohesiveness and completeness of a program's user interface.

• Portability : the range of computer hardware and operating system platforms on which the
source code of a program can be compiled/interpreted and run. This depends on differences
in the programming facilities provided by the different platforms, including hardware and
operating system resources, expected behaviour of the hardware and operating system, and
availability of platform specific compilers (and sometimes libraries) for the language of the
source code.

Algorithmic complexity

The academic field and the engineering practice of computer programming are both largely
concerned with discovering and implementing the most efficient algorithms for a given class of

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Compilation
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Ergonomics
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Robustness
http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Reliability_engineering#Software_reliability
http://en.wikipedia.org/wiki/Memory_leak
http://en.wikipedia.org/wiki/Temporary_file
http://en.wikipedia.org/wiki/Performance_engineering
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Offshore_outsourcing
http://en.wikipedia.org/wiki/Offshore_outsourcing
http://en.wikipedia.org/wiki/Computational_overhead
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Abstraction_(computer_science)

problem. For this purpose, algorithms are classified into orders using so-called Big O notation,
O(n), which expresses resource use, such as execution time or memory consumption, in terms of the
size of an input. Expert programmers are familiar with a variety of well-established algorithms and
their respective complexities and use this knowledge to choose algorithms that are best suited to the
circumstances.

Methodologies

The first step in most formal software development projects is requirements analysis, followed by
testing to determine value modeling, implementation, and failure elimination (debugging). There
exist a lot of differing approaches for each of those tasks. One approach popular for requirements
analysis is Use Case analysis.

Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-
Driven Architecture (MDA). The Unified Modeling Language (UML) is a notation used for both
OOAD and MDA.

A similar technique used for database design is Entity-Relationship Modeling (ER Modeling).

Implementation techniques include imperative languages (object-oriented or procedural), functional
languages, and logic languages.

Measuring language usage

It is very difficult to determine what are the most popular of modern programming languages. Some
languages are very popular for particular kinds of applications (e.g., COBOL is still strong in the
corporate data center, often on large mainframes, FORTRAN in engineering applications, scripting
languages in web development, and C in embedded applications), while some languages are
regularly used to write many different kinds of applications.

Methods of measuring language popularity include: counting the number of job advertisements that
mention the language[10], the number of books teaching the language that are sold (this
overestimates the importance of newer languages), and estimates of the number of existing lines of
code written in the language (this underestimates the number of users of business languages such as
COBOL).

Debugging

A bug which was debugged in 1947.

Debugging is a very important task in the software development process, because an incorrect
program can have significant consequences for its users. Some languages are more prone to some
kinds of faults because their specification does not require compilers to perform as much checking

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/1947
http://en.wikipedia.org/wiki/Software_bug
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_note-9
http://en.wikipedia.org/wiki/Embedded_software
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Fortran_(programming_language)
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Entity-Relationship_Model
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Model-Driven_Architecture
http://en.wikipedia.org/wiki/OOAD
http://en.wikipedia.org/wiki/Use_Case
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/File:H96566k.jpg

as other languages. Use of a static analysis tool can help detect some possible problems.

Debugging is often done with IDEs like Visual Studio, NetBeans, and Eclipse. Standalone
debuggers like gdb are also used, and these often provide less of a visual environment, usually using
a command line.

Programming languages
Main articles: Programming language and List of programming languages

Different programming languages support different styles of programming (called programming
paradigms). The choice of language used is subject to many considerations, such as company
policy, suitability to task, availability of third-party packages, or individual preference. Ideally, the
programming language best suited for the task at hand will be selected. Trade-offs from this ideal
involve finding enough programmers who know the language to build a team, the availability of
compilers for that language, and the efficiency with which programs written in a given language
execute.

Allen Downey, in his book How To Think Like A Computer Scientist, writes:

The details look different in different languages, but a few basic instructions appear in just
about every language:

• input: Get data from the keyboard, a file, or some other device.
• output: Display data on the screen or send data to a file or other device.
• arithmetic: Perform basic arithmetical operations like addition and multiplication.
• conditional execution: Check for certain conditions and execute the appropriate

sequence of statements.
• repetition: Perform some action repeatedly, usually with some variation.

Many computer languages provide a mechanism to call functions provided by libraries. Provided
the functions in a library follow the appropriate runtime conventions (eg, method of passing
arguments), then these functions may be written in any other language.

Programmers
Main article: Programmer
See also: Software developer and Software engineer

Computer programmers are those who write computer software. Their jobs usually involve:

• Coding
• Compilation
• Documentation
• Integration
• Maintenance
• Requirements analysis
• Software architecture
• Software testing
• Specification
• Debugging

References
1. ̂ Paul Graham (2003). Hackers and Painters. http://www.paulgraham.com/hp.html.

Retrieved on 2006-08-22.

http://www.paulgraham.com/hp.html
http://www.paulgraham.com/hp.html
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-0
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Specification
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Digital_integration
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Code_(computer_programming)
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Software_engineer
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Programmer
http://www.greenteapress.com/thinkapjava/
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/List_of_programming_languages
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Gdb
http://en.wikipedia.org/wiki/Eclipse_(software)
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Visual_Studio
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Static_analysis

2. ̂ Kenneth E. Iverson, the originator of the APL programming language, believed that the
Sapir–Whorf hypothesis applied to computer languages (without actually mentioning the
hypothesis by name). His Turing award lecture, "Notation as a tool of thought", was devoted
to this theme, arguing that more powerful notations aided thinking about computer
algorithms. Iverson K.E.,"Notation as a tool of thought", Communications of the ACM, 23:
444-465 (August 1980).

3. ̂ New World Encyclopedia Online Edition New World Encyclopedia
4. ̂ Al-Jazari - the Mechanical Genius, MuslimHeritage.com
5. ̂ A 13th Century Programmable Robot, University of Sheffield
6. ̂ Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical

Instruments", Music Educators Journal 54 (2): 45–49, doi:10.2307/3391092
7. ̂ Columbia University Computing History - Herman Hollerith
8. ̂ [1]
9. ̂ [2]
10. ̂ Survey of Job advertisements mentioning a given language>

Further reading
• Weinberg, Gerald M. , The Psychology of Computer Programming, New York: Van Nostrand

Reinhold, 1971

See also
Main article: Outline of computer programming

• ACCU (organisation)
• Association for Computing Machinery
• Computer programming in the punch card era
• Hello world program
• List of basic computer programming topics
• List of computer programming topics
• Programming paradigms
• Software engineering
• The Art of Computer Programming

[edit] External links
Wikibooks has a book on the topic of

Computer programming

Wikibooks has a book on the topic of
Windows Programming

• Programming Wikia
• Programming Wiki
• How to Think Like a Computer Scientist - by Jeffrey Elkner, Allen B. Downey and Chris

Meyers

Major fields of computer science

Mathematical foundations
Mathematical logic · Set theory · Number theory · Graph theory ·
Type theory · Category theory · Numerical analysis · Information
theory

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Category_theory
http://en.wikipedia.org/wiki/Type_theory
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Set_theory
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://openbookproject.net/thinkCSpy
http://wiki.codecall.net/
http://programming.wikia.com/wiki/Main_Page
http://en.wikibooks.org/wiki/Windows_Programming
http://en.wikipedia.org/wiki/Wikibooks
http://en.wikibooks.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Wikibooks
http://en.wikipedia.org/w/index.php?title=Computer_programming&action=edit§ion=14
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/List_of_computer_programming_topics
http://en.wikipedia.org/wiki/List_of_basic_computer_programming_topics
http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/Computer_programming_in_the_punch_card_era
http://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://en.wikipedia.org/wiki/ACCU_(organisation)
http://en.wikipedia.org/wiki/Outline_of_computer_programming
http://en.wikipedia.org/wiki/Gerald_Weinberg
http://www.computerweekly.com/Articles/2007/09/11/226631/sslcomputer-weekly-it-salary-survey-finance-boom-drives-it-job.htm
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-9
http://www.math.grin.edu/~rebelsky/Courses/CS302/99S/Outlines/outline.02.html
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-8
http://www.msnbc.msn.com/id/17704662/
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-7
http://www.columbia.edu/acis/history/hollerith.html
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-6
http://dx.doi.org/10.2307/3391092
http://en.wikipedia.org/wiki/Digital_object_identifier
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-5
http://en.wikipedia.org/wiki/University_of_Sheffield
http://www.shef.ac.uk/marcoms/eview/articles58/robot.html
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-4
http://muslimheritage.com/topics/default.cfm?ArticleID=188
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-3
http://www.newworldencyclopedia.org/entry/Hephaestus
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-2
http://elliscave.com/APL_J/tool.pdf
http://en.wikipedia.org/wiki/Turing_award
http://en.wikipedia.org/wiki/APL_(programming_language)
http://en.wikipedia.org/wiki/Kenneth_E._Iverson
file:///home/rhiza/Desktop/Komputasi dan Pemrograman/Computer_programming.html#cite_ref-1
http://en.wikibooks.org/wiki/Special:Search/Computer_programming
http://en.wikibooks.org/wiki/Special:Search/Computer_programming

Theory of computation
Automata theory · Computability theory · Computational complexity
theory · Quantum computing theory

Algorithms and data
structures

Analysis of algorithms · Algorithm design · Computational geometry

Programming languages
and Compilers

Parsers · Interpreters · Procedural programming · Object-oriented
programming · Functional programming · Logic programming ·
Programming paradigms

Concurrent, Parallel, and
Distributed systems

Multiprocessing · Grid computing · Concurrency control

Software engineering
Requirements analysis · Software design · Computer programming ·
Formal methods · Software testing · Software development process

System architecture Computer architecture · Computer organization · Operating systems

Telecommunication &
Networking

Computer audio · Routing · Network topology · Cryptography

Databases Data mining · Relational databases · SQL • OLAP

Artificial intelligence
Automated reasoning · Computational linguistics · Computer vision ·
Evolutionary computation · Machine learning · Natural language
processing · Robotics

Computer graphics Visualization · Image processing

Human computer
interaction

Computer accessibility · User interfaces · Wearable computing ·
Ubiquitous computing · Virtual reality

Scientific computing
Artificial life · Bioinformatics · Cognitive Science · Computational
chemistry · Computational neuroscience · Computational physics ·
Numerical algorithms · Symbolic mathematics

NOTE: Computer science can also be split up into different topics or fields according to the ACM
Computing Classification System.

Software engineering

Fields
Requirements analysis • Software design • Computer programming • Formal
methods • Software testing • Software deployment • Software maintenance

Concepts

Data modeling • Enterprise architecture • Functional specification • Modeling
language • Programming paradigm • Software • Software architecture • Software
development methodology • Software development process • Software quality •
Software quality assurance • Structured analysis

Orientations Agile • Aspect-oriented • Object orientation • Ontology • Service orientation • SDLC

Models

Development models: Agile • Iterative model • RUP • Scrum • Spiral model •
Waterfall model • XP • V-Model
Other models: Automotive SPICE • CMMI • Data model • Function model • IDEF •
Information model • Metamodeling • Object model • Systems model • View model •
UML

Software Kent Beck • Grady Booch • Fred Brooks • Barry Boehm • Ward Cunningham • Ole-

http://en.wikipedia.org/wiki/Ole-Johan_Dahl
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/Grady_Booch
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/View_model
http://en.wikipedia.org/wiki/Systems_modeling
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Metamodeling
http://en.wikipedia.org/wiki/Information_model
http://en.wikipedia.org/wiki/IDEF
http://en.wikipedia.org/wiki/Function_model
http://en.wikipedia.org/wiki/Data_model
http://en.wikipedia.org/wiki/Capability_Maturity_Model_Integration
http://en.wikipedia.org/wiki/ISO_15504
http://en.wikipedia.org/wiki/V-Model_(software_development)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Systems_Development_Life_Cycle
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Ontology_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Structured_analysis
http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Functional_specification
http://en.wikipedia.org/wiki/Enterprise_architecture
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/ACM_Computing_Classification_System
http://en.wikipedia.org/wiki/ACM_Computing_Classification_System
http://en.wikipedia.org/wiki/Symbolic_mathematics
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Computational_physics
http://en.wikipedia.org/wiki/Computational_neuroscience
http://en.wikipedia.org/wiki/Computational_chemistry
http://en.wikipedia.org/wiki/Computational_chemistry
http://en.wikipedia.org/wiki/Cognitive_Science
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Artificial_life
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Virtual_reality
http://en.wikipedia.org/wiki/Ubiquitous_computing
http://en.wikipedia.org/wiki/Wearable_computing
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Computer_accessibility
http://en.wikipedia.org/wiki/Human_computer_interaction
http://en.wikipedia.org/wiki/Human_computer_interaction
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Visualization_(graphic)
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Robotics
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Computational_linguistics
http://en.wikipedia.org/wiki/Automated_reasoning
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/OLAP
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Relational_databases
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Databases
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Computer_audio
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_organization
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/System_architecture
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Parser
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Algorithm_design
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Quantum_computing
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Computability_theory_(computer_science)
http://en.wikipedia.org/wiki/Automata_theory
http://en.wikipedia.org/wiki/Theory_of_computation

engineers

Johan Dahl • Tom DeMarco • Edsger W. Dijkstra • Martin Fowler • C. A. R. Hoare •
Watts Humphrey • Michael A. Jackson • Ivar Jacobson • Craig Larman • James
Martin • Bertrand Meyer • David Parnas • Winston W. Royce • James Rumbaugh •
Niklaus Wirth • Edward Yourdon

Related
fields

Computer science • Computer engineering • Enterprise engineering • History •
Management • Mathematics • Project management • Quality management • Software
ergonomics • Systems engineering

Retrieved from "http://en.wikipedia.org/wiki/Computer_programming"

Categories: Software development process | Computer programming

http://en.wikipedia.org/wiki/Category:Computer_programming
http://en.wikipedia.org/wiki/Category:Software_development_process
http://en.wikipedia.org/wiki/Special:Categories
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Ergonomics
http://en.wikipedia.org/wiki/Ergonomics
http://en.wikipedia.org/wiki/Quality_management
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/History_of_software_engineering
http://en.wikipedia.org/wiki/Enterprise_engineering
http://en.wikipedia.org/wiki/Computer_engineering
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Edward_Yourdon
http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/James_Rumbaugh
http://en.wikipedia.org/wiki/Winston_W._Royce
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikipedia.org/wiki/Bertrand_Meyer
http://en.wikipedia.org/wiki/James_Martin_(author)
http://en.wikipedia.org/wiki/James_Martin_(author)
http://en.wikipedia.org/wiki/Craig_Larman
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Michael_A._Jackson
http://en.wikipedia.org/wiki/Watts_Humphrey
http://en.wikipedia.org/wiki/C._A._R._Hoare
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Tom_DeMarco
http://en.wikipedia.org/wiki/Ole-Johan_Dahl

	Computer programming
	From Wikipedia, the free encyclopedia
	Contents
	Overview
	History of programming
	Modern programming
	Quality requirements
	Algorithmic complexity
	Methodologies
	Measuring language usage
	Debugging

	Programming languages
	Programmers
	References
	Further reading
	See also
	[edit] External links

