Phase Control Chart 8.1 CIRCUIT CONSTANTS OF SOME MAJOR PHASE CONTROLLED CIRCUITS† | Cir
(a) | cuit (b) Connections | (c)
Load voltage
waveforms | Peak
forward
voltage
on SCR | Pec
reve
volte
(e)
On
SCR | rse | (g) Max. load voltage $(\alpha = 0)$ $E_D = \text{average } \text{d-c value}$ $E_\sigma = \text{RMS} \text{a-c value}$ | |---|---|----------------------------------|--------------------------------------|--|--------------------------|---| | (1) Half-wave resistive load | o R≸Load | | Ε | Ε | -1 | $E_0 = \frac{E}{\pi}$ $E_0 = \frac{E}{2}$ | | (2) Half-wave inductive load with free-wheeling rectifier | Lood | o A E | Ε | Ε | Ε | $E_D = \frac{\mathcal{E}}{\pi}$ | | (3) Centertap
with resistive
load, or inductive
load with
free—wheeling
rectifier | CR1 Lood | | E (possibly 2E if load open) | 2E | Ε | $E_D = \frac{2E}{\pi}$ | | (4) Centertap
with resistive
or inductive
load—SCR
in d-c circuit | CR ₂ SCR
Load CR ₁ | | E | 0 | 2E
ON C
E OI
CR | $E_D = \frac{2E}{\pi}$ | | (5) Centertap
with
inductive
load (no
free-wheeling
rectifier) | L R Load | | 2 <i>E</i> | 2 <i>E</i> | | $E_D = \frac{2E}{\pi}$ | | (6) Single- phat
bridge with
2 SCR's with
common anode
or cathode.
Resistive load
or inductive
load with
free-wheeling
rectifier | CR ₁ CR ₂ CR ₂ CR ₂ | | E | Ε | E (CF) | $E_D = \frac{2E}{\pi}$ | † Assumes zero forward drop in semiconductors when conducting, and zero current when blocking; also zero a-c line and source reactance. Inductive d-c loads have pure d-c current. ## Chart 8.1 (cont.) | (h) | (j) | steady-state er current in SCR e (k) (| | Max.
steady-sta
current
in diode rect | | (p) Ability to pumpback | | | | |---|---|--|------|--|--------------------------------------|---|--|--|--| | Load voltage $ u s$ trigger delay angle $lpha$ | angle
range
full on
to
full off | | | | (n)
Cond.
angle
for
max. | inductive
load
energy
to
supply | of
load
voltage
(f = supply
frequency) | Notes and comments | | | $E_D = \frac{E}{2\pi} (1 + \cos \alpha)$ $E_\sigma = \frac{E}{2\sqrt{\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$ | 180° | <u>Ε</u>
πR | 180° | _ | current | line | f | | | | $E_0 = \frac{E}{2\pi} (1 + \cos \alpha)$ | 180° | <u>Ε</u>
2πR
(load
highly
inductive) | 180° | $0.54\left(\frac{\mathcal{E}}{\pi R}\right)$ | 210° | No | f | | | | $E_D = \frac{\varepsilon}{\pi} (1 + \cos \alpha)$ | 180° | <u>ε</u>
π <i>R</i> | 180° | $0.26\left(\frac{2E}{\pi R}\right)$ | 148° | No | 2 <i>f</i> | 1000 / Vision (1000 | | | | | | | $CR_1 = \frac{E}{\pi R}$ | 180° | 25 | 54.50 _{2.3} | CR ₂ necessary when load is not | | | $\dot{\mathcal{E}}_D = \frac{\mathcal{E}}{\pi} (1 + \cos \alpha)$ | 180° | <u>2</u> €
πR | 360° | $CR_2 = 0.26 \left(\frac{2E}{\pi R}\right)$ with highly inductive load | 148° | No | 2 <i>f</i> | purely resistive.
Frequency limited
by recovery
characteristics
of rectifiers
and SCR. | | | $E_D = \frac{2E}{\pi} \cos \alpha$ (assuming continuous current in load) | 180° | <u>Ε</u>
π <i>R</i> | 180° | | | Yes | 2 <i>f</i> | | | | | | | | $CR_1 = \frac{E}{\pi R}$ | 180°, | | | Without CR ₂ , SCR's may be unable to turn off an | | | $E_D = \frac{E}{\pi} (1 + \cos \alpha)$ | 180° | <u>Ε</u>
π <i>R</i> | 180° | $CR_2 = 0.26 \left(\frac{2E}{\pi R}\right)$ | 148° | No | 2 <i>f</i> | inductive load.
Also, CR ₂ relieves
SCR's from free-
wheeling duty.
See Sec. 8.5. | | ## Chart 8.1 (cont.) | | Parameter Communication of the | | The second secon | 7 | | | | | Chart o | (002 | , | | | | | · · · · · · | | |---|--|-------------------------------------|--|--|--|--------------------------|---|-----|---|------------------------------------|-----------------------------------|-----------------------|---|---------------------------------|--------------------------------|--------------------------------------|--| | | (a) | Circuit (b) | (c) Load voltage waveforms | (d)
Peak
forward | | ak
erse
tage | (g) Max. load voltage (α = 0) E _D = average | | (h)
Load voltage | (j)
Trigger
angle | Max
steady-s
curre
in SC | state
nt | Max.
steady—state
current
in diode recti
(m) | | pumpback
inductive
load | of
load | (r) Notes and comments | | | Name | Connections | waveloring | voltage
on SCR | (e)
On
SCR | (f)
On
diode | d-c value E _a = RMS a-c value | | νs
trigger delay
angle α | range
full ON
to
full OFF | (k)
Average
amp | (1)
Cond.
angle | Average
amp | angle
for
max.
current | energy
to
supply
line | voltage
(f = supply
frequency) | | | | (7) Single—phase
bridge with
2 SCR's on
common a-c line
Resistive or
inductive load | Load R | | E | E | E | $E_D = \frac{2E}{\pi}$ | | $E_D = \frac{E}{\pi} (1 + \cos \alpha)$ | 180° | <u>Ε</u>
π <i>R</i> | 180° | <u>ਵ</u>
ਜਸ | 180° | No | 2 <i>f</i> | Diode rectifiers act as free—wheeling path, conduct ($\pi + cc$) degrees with inductive load. | | | (8) Single-phase
bridge with
4 SCR's and
inductive load | Load R | λ. ξ. | E | Ε | <u>-</u> | $\mathcal{E}_D = \frac{2\mathcal{E}}{\pi}$ | | $E_D = \frac{2E}{\pi} \cos \alpha$ (assuming continuous current in load) | 180° | <u>ε</u>
π <i>R</i> | 180° | | - | Yes | 2 <i>f</i> | With resistive
load operation
is same as
circuit (7). | | | (9) Single-phase
bridge with
single SCR | (4) CR ₂ D | A E | | | E
(CR ₁ | | | | | | | $CR_1 = \frac{E}{\pi R}$ | 180° | | | CR2 necessary when load is not purely | | | in d-c circuit.
Resistive or
inductive load | CR ₂ CR ₂ SCR | | Ε | 0 | and
CR ₂) | $E_D = \frac{2E}{\pi}$ | | $E_D = \frac{\mathcal{E}}{\pi} (1 + \cos \alpha)$ | 180° |)° | 360° | $CR_2 = 0.16 \left(\frac{2E}{\pi R}\right)$ | 148° | No | 2f | resistive. Frequency
limited by recovery
characteristics of
rectifiers and SCR's. | | | (IO) Three-phase
half-wave with
resistive load,
or inductive
load with | E mm | | E
(possibly
√3 E if
load open
and if SCR's | √3 E | Ε | $E_D = \frac{3\sqrt{3}E}{2\pi}$ | | $E_D = \frac{3\sqrt{3} E}{2\pi} \cos \alpha$ $(O < \alpha < 30^\circ)$ | 150° | √3 E
2πR | 120° | O.16 $\left(\frac{3\sqrt{3} E}{2\pi R}\right)$ | 134° | No | 3 <i>f</i> | | | | free-wheeling
rectifier | Load R | | have high
reverse
currents | | | | 1 | $E_D = \frac{3E}{2\pi} [1 + \cos(\alpha + 30^\circ)]$ $(30^\circ < \alpha < 150^\circ)$ | 8 10 | | | y 540 % 350 | | 1 5×1 | 10 142, 151 1 | | | | (II) Three-phase
half-wave
with inductive
load (no
free-wheeling
rectifier) | Lood L | | √3 E | √3 E | _ | $E_D = \frac{3\sqrt{3} E}{2\pi}$ | | $E_D = \frac{3\sqrt{3} \mathcal{E}}{2\pi} \cos \alpha$ (assuming continuous current in load) | 150° | √3 E
2πR | 120 | • | - | Yes | 3/ | | | | i2) Three-phase
bridge with
3 SCR's. | (3)
CR1 | + α + · · · · · · · · · · · · · · · · · | | | | | | | | | | $CR_1 = \frac{\sqrt{3} E}{\pi R}$ | 120° | | | Without CR ₂ , SCR's
may be unable
to turn off an | | | Resistive load,
or inductive
load with
free-wheeling
rectifier | Load CR2 L R | | $\sqrt{3} E \sqrt{3} E = \frac{3\sqrt{3} E}{\pi}$ $E_0 = \frac{3\sqrt{3} E}{2\pi} (1 + \cos \alpha)$ | $E_D = \frac{3\sqrt{3} \mathcal{E}}{2\pi} (1 + \cos \alpha)$ | 180° | <u>√3 Ε</u>
πR | 120 | $CR_2 = 0.14 \left(\frac{3\sqrt{3}}{\pi} \right)$ | <u>(</u>) 132 | No
• | 3/ | inductive load.
Also, CR ₂ relieves
SCR's from
free-wheeling duty | | | | | | - | 3) Three—phase
bridge with 6
SCR's. Resistive
load, or inductive
load with
free—wheeling
rectifier | CR1 L A | | √3 E
(I.5E if
SCR's
shunted
by
resistance) | √3 E | √3 E | $E_D = \frac{3\sqrt{3}E}{\pi}$ | | $E_D = \frac{3\sqrt{3} E}{\pi} \cos \alpha$ $(0 < \alpha < 60^\circ)$ $E_D = \frac{3\sqrt{3} E}{\pi} \left(1 + \frac{\cos \alpha}{2} - \frac{\sqrt{3}}{2} \sin \alpha\right)$ | α) | √3 E
πR | 120 | 0° 0,056(3√3 €
πR |) 212 | e° No | 6/ | SCR's require
two gate signals
60° apart each
cycle, alternately
a gate signal
duration > 60° | Chart 8.1 (cont.) | Circ
(a) | uit (b) | (c)
Load voltage
waveforms | (d) Peak forward voltage | Per reve volt | erse
age | (g) Max. load voltage (α = 0) E ₀ = average d-c value | | |---|-------------|---|---|--------------------|-------------|---|--| | Name | Connections | The second section | on SCR | On On
SCR diode | | E _a = RMS
a-c value | | | (14) Three-phase
bridge with
6 SCR's with
inductive load | Lood Lood L | | √3 E
(1.5E if
SCR's
shunted
by
resistance) | √3 E | _ | $E_D = \frac{3\sqrt{3} E}{\pi}$ | | | (15) inverse parallel SCR's with resistive load | ₩ R Lood | ο Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α | E | ε | _ | $E_a = \frac{E}{\sqrt{2}}$ | | | (I6) SCR inside
bridge with
a-c resistive
load | E SCR Lood | | Ε | 0 | Ε | $E_a = \frac{E}{\sqrt{2}}$ | | During the positive half-cycle of the supply voltage, the SCR anode is positive with respect to its cathode, and the gate can exert control over the SCR conduction characteristics as described in detail in Sec. 5.2. Until the gate is triggered by a proper positive signal from the trigger circuit, the SCR blocks the flow of load current in the forward direction. At some arbitrary delay angle a, a positive trigger signal is applied between gate and cathode which initiates SCR current conduction. Immediately the full supply voltage, minus approximately one volt drop across the SCR, is applied to the load. With a zero reactance source and a purely resistive load, the current waveform after the SCR is triggered will be identical to the applied voltage wave, and of a magnitude dependent on the amplitude of the voltage and the value of load resistance R. As shown in Fig. 8.1(b), load current will flow until it is commutated by reversal of the supply voltage at $\omega t = \pi$. By controlling the trigger delay angle a with respect to the supply voltage by such means as described in Chap. 5 and later in this chapter, we may vary the phase relationship of the start of current flow to the supply voltage and control the load current from a maximum value down to zero-hence the term phase control. Chart 8.1 (cont.) | (h) | (j) | Max. steady-state current in SCR (k) (i) Average Cond. amp angle | | Max.
steady-state
current
in diode rectifier | | pumpback | | | | |--|---|---|------|---|---|---|--|---|--| | Load voltage vs trigger delay angle α | angle
range
full on
to
full off | | | (m)
Average
amp | (n)
Cond.
angle
for
max.
current | inductive
load
energy
to
supply
line | of load voltage (f = supply frequency) | Notes and comments | | | $E_0 = \frac{3\sqrt{3} E}{\pi} \cos \alpha$ (assuming continuous current in load | 120° | √3 E
πR | 120° | - 1 | | Yes | 6/ | SCR's require two gate signals 60° apart each cycle, alternately a gate signal duration > 60°. | | | $\mathcal{E}_{\sigma} = \frac{\mathcal{E}}{\sqrt{2\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$ | 180° | $\frac{E_0}{2.2R}$ or $\frac{E}{\pi R}$ | 180° | <u> </u> | | | f | With inductive load, load voltage and current depend on well as R and a. | | | $E_{\sigma} = \frac{\mathcal{E}}{\sqrt{2\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$ | 180°] | $\frac{\mathcal{E}_{\mathcal{O}}}{\text{I.IR}}$ or $\frac{2\mathcal{E}}{\pi R}$ | 360° | Ε _α
2.2F
ΟΓ
<u>Ε</u>
πR | 180° | | f . | Inductance in d-c circuit must be minimum. Frequency limit determined by recovery characteristics of rectifiers and SCR's. With inductive load, load voltage and current depend on $\omega L/R$ as well as R and α . | | Fig. 8.1 Half-wave phase-controlled SCR with resistive load: (a) circuit; (b) waveforms.