Phase Control

Chart 8.1 CIRCUIT CONSTANTS OF SOME MAJOR PHASE CONTROLLED CIRCUITS†

Cir (a)	cuit (b) Connections	(c) Load voltage waveforms	Peak forward voltage on SCR	Pec reve volte (e) On SCR	rse	(g) Max. load voltage $(\alpha = 0)$ $E_D = \text{average } \text{d-c value}$ $E_\sigma = \text{RMS} \text{a-c value}$
(1) Half-wave resistive load	o R≸Load		Ε	Ε	-1	$E_0 = \frac{E}{\pi}$ $E_0 = \frac{E}{2}$
(2) Half-wave inductive load with free-wheeling rectifier	Lood	o A E	Ε	Ε	Ε	$E_D = \frac{\mathcal{E}}{\pi}$
(3) Centertap with resistive load, or inductive load with free—wheeling rectifier	CR1 Lood		E (possibly 2E if load open)	2E	Ε	$E_D = \frac{2E}{\pi}$
(4) Centertap with resistive or inductive load—SCR in d-c circuit	CR ₂ SCR Load CR ₁		E	0	2E ON C E OI CR	$E_D = \frac{2E}{\pi}$
(5) Centertap with inductive load (no free-wheeling rectifier)	L R Load		2 <i>E</i>	2 <i>E</i>		$E_D = \frac{2E}{\pi}$
(6) Single- phat bridge with 2 SCR's with common anode or cathode. Resistive load or inductive load with free-wheeling rectifier	CR ₁ CR ₂ CR ₂ CR ₂		E	Ε	E (CF)	$E_D = \frac{2E}{\pi}$

† Assumes zero forward drop in semiconductors when conducting, and zero current when blocking; also zero a-c line and source reactance. Inductive d-c loads have pure d-c current.

Chart 8.1 (cont.)

(h)	(j)	steady-state er current in SCR e (k) (Max. steady-sta current in diode rect		(p) Ability to pumpback			
Load voltage $ u s$ trigger delay angle $lpha$	angle range full on to full off				(n) Cond. angle for max.	inductive load energy to supply	of load voltage (f = supply frequency)	Notes and comments	
$E_D = \frac{E}{2\pi} (1 + \cos \alpha)$ $E_\sigma = \frac{E}{2\sqrt{\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$	180°	<u>Ε</u> πR	180°	_	current	line	f		
$E_0 = \frac{E}{2\pi} (1 + \cos \alpha)$	180°	<u>Ε</u> 2πR (load highly inductive)	180°	$0.54\left(\frac{\mathcal{E}}{\pi R}\right)$	210°	No	f		
$E_D = \frac{\varepsilon}{\pi} (1 + \cos \alpha)$	180°	<u>ε</u> π <i>R</i>	180°	$0.26\left(\frac{2E}{\pi R}\right)$	148°	No	2 <i>f</i>	1000 / Vision (1000 /	
				$CR_1 = \frac{E}{\pi R}$	180°	25	54.50 _{2.3}	CR ₂ necessary when load is not	
$\dot{\mathcal{E}}_D = \frac{\mathcal{E}}{\pi} (1 + \cos \alpha)$	180°	<u>2</u> € πR	360°	$CR_2 = 0.26 \left(\frac{2E}{\pi R}\right)$ with highly inductive load	148°	No	2 <i>f</i>	purely resistive. Frequency limited by recovery characteristics of rectifiers and SCR.	
$E_D = \frac{2E}{\pi} \cos \alpha$ (assuming continuous current in load)	180°	<u>Ε</u> π <i>R</i>	180°			Yes	2 <i>f</i>		
				$CR_1 = \frac{E}{\pi R}$	180°,			Without CR ₂ , SCR's may be unable to turn off an	
$E_D = \frac{E}{\pi} (1 + \cos \alpha)$	180°	<u>Ε</u> π <i>R</i>	180°	$CR_2 = 0.26 \left(\frac{2E}{\pi R}\right)$	148°	No	2 <i>f</i>	inductive load. Also, CR ₂ relieves SCR's from free- wheeling duty. See Sec. 8.5.	

Chart 8.1 (cont.)

	Parameter Communication of the		The second secon	7					Chart o	(002	,					· · · · · ·	
	(a)	Circuit (b)	(c) Load voltage waveforms	(d) Peak forward		ak erse tage	(g) Max. load voltage (α = 0) E _D = average		(h) Load voltage	(j) Trigger angle	Max steady-s curre in SC	state nt	Max. steady—state current in diode recti (m)		pumpback inductive load	of load	(r) Notes and comments
	Name	Connections	waveloring	voltage on SCR	(e) On SCR	(f) On diode	d-c value E _a = RMS a-c value		νs trigger delay angle α	range full ON to full OFF	(k) Average amp	(1) Cond. angle	Average amp	angle for max. current	energy to supply line	voltage (f = supply frequency)	
	(7) Single—phase bridge with 2 SCR's on common a-c line Resistive or inductive load	Load R		E	E	E	$E_D = \frac{2E}{\pi}$		$E_D = \frac{E}{\pi} (1 + \cos \alpha)$	180°	<u>Ε</u> π <i>R</i>	180°	<u>ਵ</u> ਜਸ	180°	No	2 <i>f</i>	Diode rectifiers act as free—wheeling path, conduct ($\pi + cc$) degrees with inductive load.
	(8) Single-phase bridge with 4 SCR's and inductive load	Load R	λ. ξ.	E	Ε	<u>-</u>	$\mathcal{E}_D = \frac{2\mathcal{E}}{\pi}$		$E_D = \frac{2E}{\pi} \cos \alpha$ (assuming continuous current in load)	180°	<u>ε</u> π <i>R</i>	180°		-	Yes	2 <i>f</i>	With resistive load operation is same as circuit (7).
	(9) Single-phase bridge with single SCR	(4) CR ₂ D	A E			E (CR ₁							$CR_1 = \frac{E}{\pi R}$	180°			CR2 necessary when load is not purely
	in d-c circuit. Resistive or inductive load	CR ₂ CR ₂ SCR		Ε	0	and CR ₂)	$E_D = \frac{2E}{\pi}$		$E_D = \frac{\mathcal{E}}{\pi} (1 + \cos \alpha)$	180°)°	360°	$CR_2 = 0.16 \left(\frac{2E}{\pi R}\right)$	148°	No	2f	resistive. Frequency limited by recovery characteristics of rectifiers and SCR's.
	(IO) Three-phase half-wave with resistive load, or inductive load with	E mm		E (possibly √3 E if load open and if SCR's	√3 E	Ε	$E_D = \frac{3\sqrt{3}E}{2\pi}$		$E_D = \frac{3\sqrt{3} E}{2\pi} \cos \alpha$ $(O < \alpha < 30^\circ)$	150°	√3 E 2πR	120°	O.16 $\left(\frac{3\sqrt{3} E}{2\pi R}\right)$	134°	No	3 <i>f</i>	
	free-wheeling rectifier	Load R		have high reverse currents				1	$E_D = \frac{3E}{2\pi} [1 + \cos(\alpha + 30^\circ)]$ $(30^\circ < \alpha < 150^\circ)$	8 10			y 540 % 350		1 5×1	10 142, 151 1	
	(II) Three-phase half-wave with inductive load (no free-wheeling rectifier)	Lood L		√3 E	√3 E	_	$E_D = \frac{3\sqrt{3} E}{2\pi}$		$E_D = \frac{3\sqrt{3} \mathcal{E}}{2\pi} \cos \alpha$ (assuming continuous current in load)	150°	√3 E 2πR	120	•	-	Yes	3/	
	i2) Three-phase bridge with 3 SCR's.	(3) CR1	+ α + · · · · · · · · · · · · · · · · ·										$CR_1 = \frac{\sqrt{3} E}{\pi R}$	120°			Without CR ₂ , SCR's may be unable to turn off an
	Resistive load, or inductive load with free-wheeling rectifier	Load CR2 L R		$\sqrt{3} E \sqrt{3} E = \frac{3\sqrt{3} E}{\pi}$ $E_0 = \frac{3\sqrt{3} E}{2\pi} (1 + \cos \alpha)$	$E_D = \frac{3\sqrt{3} \mathcal{E}}{2\pi} (1 + \cos \alpha)$	180°	<u>√3 Ε</u> πR	120	$CR_2 = 0.14 \left(\frac{3\sqrt{3}}{\pi} \right)$	<u>(</u>) 132	No •	3/	inductive load. Also, CR ₂ relieves SCR's from free-wheeling duty				
-	3) Three—phase bridge with 6 SCR's. Resistive load, or inductive load with free—wheeling rectifier	CR1 L A		√3 E (I.5E if SCR's shunted by resistance)	√3 E	√3 E	$E_D = \frac{3\sqrt{3}E}{\pi}$		$E_D = \frac{3\sqrt{3} E}{\pi} \cos \alpha$ $(0 < \alpha < 60^\circ)$ $E_D = \frac{3\sqrt{3} E}{\pi} \left(1 + \frac{\cos \alpha}{2} - \frac{\sqrt{3}}{2} \sin \alpha\right)$	α)	√3 E πR	120	0° 0,056(3√3 € πR) 212	e° No	6/	SCR's require two gate signals 60° apart each cycle, alternately a gate signal duration > 60°

Chart 8.1 (cont.)

Circ (a)	uit (b)	(c) Load voltage waveforms	(d) Peak forward voltage	Per reve volt	erse age	(g) Max. load voltage (α = 0) E ₀ = average d-c value	
Name	Connections	The second section	on SCR	On On SCR diode		E _a = RMS a-c value	
(14) Three-phase bridge with 6 SCR's with inductive load	Lood Lood L		√3 E (1.5E if SCR's shunted by resistance)	√3 E	_	$E_D = \frac{3\sqrt{3} E}{\pi}$	
(15) inverse parallel SCR's with resistive load	₩ R Lood	ο Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	E	ε	_	$E_a = \frac{E}{\sqrt{2}}$	
(I6) SCR inside bridge with a-c resistive load	E SCR Lood		Ε	0	Ε	$E_a = \frac{E}{\sqrt{2}}$	

During the positive half-cycle of the supply voltage, the SCR anode is positive with respect to its cathode, and the gate can exert control over the SCR conduction characteristics as described in detail in Sec. 5.2. Until the gate is triggered by a proper positive signal from the trigger circuit, the SCR blocks the flow of load current in the forward direction. At some arbitrary delay angle a, a positive trigger signal is applied between gate and cathode which initiates SCR current conduction. Immediately the full supply voltage, minus approximately one volt drop across the SCR, is applied to the load. With a zero reactance source and a purely resistive load, the current waveform after the SCR is triggered will be identical to the applied voltage wave, and of a magnitude dependent on the amplitude of the voltage and the value of load resistance R. As shown in Fig. 8.1(b), load current will flow until it is commutated by reversal of the supply voltage at $\omega t = \pi$. By controlling the trigger delay angle a with respect to the supply voltage by such means as described in Chap. 5 and later in this chapter, we may vary the phase relationship of the start of current flow to the supply voltage and control the load current from a maximum value down to zero-hence the term phase control.

Chart 8.1 (cont.)

(h)	(j)	Max. steady-state current in SCR (k) (i) Average Cond. amp angle		Max. steady-state current in diode rectifier		pumpback			
Load voltage vs trigger delay angle α	angle range full on to full off			(m) Average amp	(n) Cond. angle for max. current	inductive load energy to supply line	of load voltage (f = supply frequency)	Notes and comments	
$E_0 = \frac{3\sqrt{3} E}{\pi} \cos \alpha$ (assuming continuous current in load	120°	√3 E πR	120°	- 1		Yes	6/	SCR's require two gate signals 60° apart each cycle, alternately a gate signal duration > 60°.	
$\mathcal{E}_{\sigma} = \frac{\mathcal{E}}{\sqrt{2\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$	180°	$\frac{E_0}{2.2R}$ or $\frac{E}{\pi R}$	180°	<u> </u>			f	With inductive load, load voltage and current depend on well as R and a.	
$E_{\sigma} = \frac{\mathcal{E}}{\sqrt{2\pi}} (\pi - \alpha + \frac{1}{2} \sin 2\alpha)^{1/2}$	180°]	$\frac{\mathcal{E}_{\mathcal{O}}}{\text{I.IR}}$ or $\frac{2\mathcal{E}}{\pi R}$	360°	Ε _α 2.2F ΟΓ <u>Ε</u> πR	180°		f .	Inductance in d-c circuit must be minimum. Frequency limit determined by recovery characteristics of rectifiers and SCR's. With inductive load, load voltage and current depend on $\omega L/R$ as well as R and α .	

Fig. 8.1 Half-wave phase-controlled SCR with resistive load: (a) circuit; (b) waveforms.