| | Lb) | (c) Load voltage waveforms | (d)
Peak
forward | Peuk
reverse
voltage | | (g) Max; load voltage (α = 0) E _D = average | | |---|--------------------------|----------------------------|--|-------------------------------|---|---|--| | ne | Connections | | voltage
on SCR | (e) (f)
On On
SCR diode | | d-c value E = RMS a-c value | | | ie-phase
with
s on
n a -c line
e or
a load | | | ε | Ε | . | E ₀ = ₹€ | | | le-phase
with
s and
a load | A E Lord R | -1 a - | £ | Ē | | E _O = ₹ | | | le-phase
with
CSI
lircuit
or
e laad | (4) CR ₂ BB A | + | Ε | 0 | E
(CR ₁
and
CR ₂) | Eo =¥ | | | #-phase
& with
load
live
https://www. | Lood CRI | | E (possibly /3 E if load open and if SCR's have high reverse currents | ∕3 E | E | Fp = 3/5 c | | | r-phase
a
uclive
ealing | Lood W | | √3.£ | ⁄3 € | | E _D = 3√3 €
2π | | | - phase
ith
lacd,
live
eting | CR2 Lpg - Load | | √3. € | /3 € | √3 E | $E_{\hat{D}}^{i} = \frac{3\sqrt{3}E}{\pi}$ | | | -phase
iin 6
esistive
adualive | Load CR1 L R | | √3 £
(1.5£ if
SCR's
shunted
by
resistance) | √3 E | √3 £ | E ₀ = 3√3 € | | | Chart 8. | | | · · · · · · · · · · · · · · · · · · · | Max | | (p) | (q) | (1) | | |--|---|--------------------------------|---------------------------------------|--|-----------------|--------------------------------|-------------------------------------|---|--| | 0) | (j) Max.
steady-sto | | stote | steady-state | | Ability to pumpback inductive | | Notes and | | | Ecad vollage vs trigger delay | angle
range
full on
to
full off | in SC
(k)
Average
amp | (1)
Cond.
angle | d amp | | load
energy
to
supply | ioad voltage (f = supply frequency) | comments | | | ₀ ≠ | 180* | <u>€</u>
π <i>P</i> | 180° | . | 180° | No | 2/ | Diode rectifiers oct as free-wheeling path, conduct (\pi + \infty) degrees with inductive load. | | | ρ ^{≥ ₹} £ cos α
issuming continuous
urrent in load) | 180° | E
TH | 180° | | | Yes | 2.5 | With resistive judd operation is same as sircuit (7). | | | | 180° | 2 <i>E</i> | | $CR_1 = \frac{E}{\pi R}$ | 180 | 1 | 2f | CR2 necessary when load is not purely resistive. Frequence | | | $E_D = \frac{E}{\pi} (1 + \cos \alpha)$ | | | 360° | $CR_2 = 0.16 \left(\frac{2E}{\pi R}\right)$ | 148 | No | | limited by recover
characteristics of
rectifiers and SCR | | | $E_{\tilde{D}} = \frac{3\sqrt{5} E}{2\pi} \cos \alpha$ $(0 < \alpha < 30^{\circ})$ | 150° | √3 E
2πR | 120° | 0.16(^{3√3} Ε) | 134 | • No | 3/ | | | | $E_D = \frac{3E}{2\pi} [1 + \cos{(\alpha + 30^\circ)}]$
(30°< \alpha < 150°) | | | | | | | | | | | $E_Q = \frac{3\sqrt{3}E}{2\pi} \cos \alpha$
(assuming continuous current in load). | 150 | √3 E
2πR | 120 | • | - | Yes | 31 | | | | | | | | CR ₁ = <u>/3 f</u> | 12 | | 3/ | Without CR ₂ , SC
may be unable
to turn off an
inductive load. | | | $E_0 = \frac{3\sqrt{3}E}{2\pi} (1 + \cos \alpha)$ | .80° | • <u>√3 €</u> | 120 | $CR_2 = 0.14 \left(\frac{5^{1/3}}{\pi}\right)^{1/3}$ | <u>5.€</u>) 13 | 2° | | Also, CR ₂ relieve
SCR's from
free-wheeling d | | | $E_0 = \frac{3\sqrt{3}E}{\pi} \cos \alpha$ $(0 < \alpha < 60^\circ)$ $E_0 = \frac{3\sqrt{3}E}{\pi} \left(1 + \frac{\cos \alpha}{2} - \frac{\sqrt{3}}{2} \sin \alpha + \frac{\sqrt{3}}{2} \cos \alpha \right)$ $(60^\circ < \alpha < 120^\circ)$ | | 20° <u>√5 1</u> | |)° 0.056(3/3 £ | £) 2 | 12° N | o 6/ | SCR's require two gate signa 60° apart eac cycle, alternate a gate signal | | | | | | | | | | | duration > 60 | |