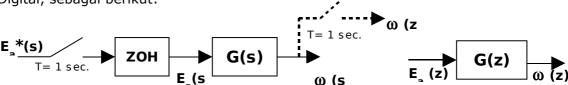
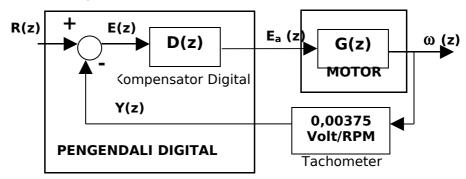

Dibawa dan dikumpulkan pada saat UJIAN FINAL AKHIR SEMESTER


Sebuah Motor DC dimodelkan dengan Nisbah Alih (*Transfer Function*) **G(s)** yang diturunkan dari bagan kotak di bawah ini.

- 1. Tentukan $G(s) = \omega(s)/E_a(s)$!
- 2. Jika $e_a(t) = 15$ Volt, $t \ge 0$, atau Ea(s) = 15/s, maka tentukanlah ω (s) dan ω (t).
- 3. Lalu lengkapilah tabel di bawah ini dan buat grafik ω fungsi **t**:

Waktu t [sec]	e _a (t) [Volt]	ω (t) [RPM]
< 0	0	0
0	15	0
0.2	15	
0,4	15	
0.6	15	
	15	
	15	
	15	
	15	
	15	
4.0	15	
4.2	15	
4.4	15	
4.6	15	
	15	
	15	
20.0	15	

4. Selanjutnya, **G(s)** dimodelkan menjadi kendalian (*plant*) dari suatu Sistem Kendali Digital, sebagai berikut:



Terangkan sejelas-jelasnya apa **pengertian fisik** dari model di atas. Tentukan $\mathbf{G}(\mathbf{z})!$ Jika diketahui $\mathbf{E_a}(\mathbf{s}) = \mathbf{15/s}$ (isyarat undak 15 Volt) maka tentukan $\mathbf{\omega}(\mathbf{z}) = \mathbf{G}(\mathbf{z}) \mathbf{E_a}(\mathbf{z})$, lalu tentukan pula $\mathbf{\omega}(\mathbf{k})$, cuplikan dari kecepatan putaran $\mathbf{\omega}(\mathbf{t})$, untuk k= 0,1,2,3200 atau t = 0, 1, 2, 3, 200 detik (buat grafiknya, lampirkan tabelnya). Terangkan sejelas-jelasnya bahwa model $\mathbf{G}(\mathbf{z})$ memang merepresentasi-kan secara akurat Motor DC $\mathbf{G}(\mathbf{s})$ pada soal no. 2. Catatan: Cari terlebih dahulu dari $\mathbf{G}(\mathbf{z})$ persamaan difference yang menghubungkan $\mathbf{\omega}(\mathbf{k})$ dan $\mathbf{e_a}(\mathbf{k})$.

Hal-hal yang kurang jelas dan sulit difahami dapat di-konsultasi-kan dengan dosen. Dianjurkan untuk mulai mengerjakan TUGAS ini seawal mungkin, jangan menunggu sampai dekat-dekat UJIAN FINAL. Semakin cepat semakin baik, kalau tidak sekarang kapan lagi, kalau bukan kita, siapa lagi...!

Dibawa dan dikumpulkan pada saat UJIAN FINAL AKHIR SEMESTER

5. Suatu kompensator digital (*Digital Compensator*) **D(z)** berupa pengendali **PID** dirancang untuk memperbaiki tanggapan kendalian **G(s)** dalam konfigurasi sebagaimana terlihat pada model berikut ini:

Jelaskan secara terperinci **implementasi fisik** dari Sistem Kendali Digital di atas, dengan menguraikan se-detail mungkin **realisasi fisik** dari masing-masing bagian Pengendali Digital (Ambil pelajaran dari **PRAKTIKUM KELOMPOK**).

6. Kompensator Digital $D(z) = E_a(z)/E(z)$ merupakan pengendali **PID** dengan model Nisbah Alih sebagai berikut (T = 0.2 sec.):

$$D(z) = E_a(z)/E(z) = K_p + \frac{Tz}{K_I(z-1)} + \frac{K_D(z-1)}{Tz}$$

Dengan masih menggunakan \mathbf{K}_P , \mathbf{K}_I dan \mathbf{K}_D , dari $\mathbf{D}(\mathbf{z})$ di atas, tentukan persamaan difference yang menghubungkan antara $\mathbf{e}_{\mathbf{a}}(\mathbf{k}) = Z$ $^{-1}$ $\mathbf{E}_{\mathbf{a}}(\mathbf{z})$ dengan $\mathbf{e}(\mathbf{k}) = Z$ $^{-1}\mathbf{E}(\mathbf{z})$.

7. Memanfaatkan hubungan antara $\mathbf{e_a(k)}$ dan $\mathbf{e(k)}$ dari persamaan difference yang diperoleh pada soal no. 6, dan hubungan antara $\mathbf{\omega(k)}$ dan $\mathbf{e_a(k)}$ dari persamaan difference yang diperoleh pada soal no. 4, susunlah Tabel sebagai berikut:

 $\mathbf{K}_{P} = ..., \, \mathbf{K}_{I} = ..., \, \text{dan } \mathbf{K}_{D} = ...$ menggunakan pers. menggunakan pers. difference soal no. 6 difference soal no. 4

k	t	r(k)	e(k) = r(k) - 0.00375* (k)	e _a (k) [V]	ω (k) [RPM]
< 0	< 0.0	0	0	0	0
0	0.0	15	15		
1	0.2	15			
2	0.4	15			
3	0.6	15			
dst.	dst.	15			
100	20.0	15			konstan

"Bermain-main"-lah dengan berbagai kombinasi nilai K_P , K_I dan K_D , sehingga diperoleh grafik ω (k) vs. k yang "lebih baik" dari yang diperoleh pada soal no. 3 dan no. 4

8. Diskusikanlah hasil-hasil yang telah diperoleh dalam simpulan anda, lalu susunlah kembali jawaban-jawaban dari soal-soal 1 s/d 7 di atas dalam suatu makalah singkat (maksimum **10** halaman, spasi-tunggal, *font*:12 pt, **sudah** termasuk lampiran) dengan format seperti **LAPORAN PRAKTIKUM**.