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Chapter 4

The Laplace Transform

41 INTRODUCTION

Several techniques used in solving engineering problems are based on the replacement
of functions of a real variable (usually time or distance) by certain frequency dependent
representations, or by functions of a complex variable dependent upon frequency. A
typical example is the use of Fourier series to solve certain electrical problems. One such
problem consists of finding the current in some part of a linear electrical network in which
the input voltage is a periodic or repeating waveform. The periodic voltage may be
replaced by its Fourier series representation, and the current produced by each term of
the series can then be determined. The total current is the sum of the individual currents

(superposition). This technique often results in a substantial savings in computational
effort.

A transformation technique relating time functions to frequency dependent functions
of a complex variable is presented in the next few sections of this chapter. It is called
the Laplace transform. The application of this mathematical transformation to solving
linear constant coefficient differential equations is discussed in the remaining sections

and provides the basis for the analysis and design techniques developed in subsequent
chapters.

42 THE LAPLACE TRANSFORM

The Laplace transform is defined in the following manner:
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Definition 4.1: Let f(t) be a real function of a real variable ¢ defined for ¢ >0. Then
T 0 |
LI[f(®)] = F(s) = lim f(t)e==t dt = f ft)e=dt, 0<e<TERE SOMI
o 75 The 1.:
is called the Laplace transform of f(t). s is a complex variable defined by & M msed ad
8 = o+ jo, where ¢ and » are real variables* and j=4/-1. ey are:
Note that the lower limit on the integral is ¢ = ¢> 0. This definition of the lower limiht o€ La
is sometimes useful in dealing with functions which are discontinuous at t=0. When}§ A
explicit use is made of this limit, it will be abbreviated # = lim « = 0*, as shown above ~=place
in the integral on the right. i Tansfo;
The real variable ¢ always denotes time. r!‘.& The invi
B the s do
* The real part ¢ of a complex variable s is often written as Re(s) (the real part of s) and the imaginary | mverse
part  as Im(s) (the imaginary part of 8). Parentheses are placed around s only when there is =8 the in
possibility of confusion. i & ¢ V:
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Definition 4.2: If f(t) is defined and single-valued for ¢> ¢ and F

vergent for some real number o, that is,

fj IF(8)] e~ at

(o) is absolutely con-

T
}imf (&) et @t < oo,

O<e<T
€=0 ¢
then f(¢) is Laplace transformable for Re(s) > o,
lzzmple 4.1.
The function ¢—t is Laplace transformable since
% =] 1 ) 1
!e‘t[ e~ 0ot gt — f e~ (topt gy e—(1+oo)t[ = et e B
jo‘+ 0+ “(1+0’0) 0+ 1 + o
L1+9;, >0 or g0 1.
lizzmple 4.2,
The Laplace transform of e—t is
e 1 ¢ 1
—t — —t g—st = o —(s+ 1)t - i
L [e~Y ‘I(;{_e e sty R S PR for Re(s) > —1

%l THE INVERSE LAPLACE TRANSFORM

The Laplace transform tran
¢ complex variable s domain,
‘ned in terms of s, it is necessary to “invert” this transfo

domain solution. The transformation from th
mverse Laplace transform.

Let F(s)
integral

rm in order to obtain the
e 8 domain into the ¢ domain is called

be the Laplace transform of a function f(t), t>0. The contour

1 c+joo &
m jc‘_jw F(S) e ds

%, as given in Definition 4.2) is called the
F(s).

LHF@E)] = £

where §—3/-1 and o> o
inverse Laplace transform of

e contour integration defined in Defini-
rm in this book, it is never necessary.

iple technique for evaluating the inverse transform for most control system problems

The Laplace transform is a lnear t
* domain and functions defined in th

Zaplace transforms of f,(t) and 1,(t), respectively,

ransformation between functions defined in the
e s domain. That is, if F (s) and F,(s) are the

then a F (s) + @, F,(s) is the Laplace

ransform of a, f,(t) where a, and @, are arbitrary constants.

+a, f, (1),

The inverse Laplace transform is a linear transformation

2¢ 5 domain and functions defined in the ¢ domain,
—=verse Laplace transforms of F (s) and Fols),
‘e inverse Laplace transform of
mmstants,

between funections defined in
That is, if f,(?) and f,(t) are the
respectively, then b.f, () + b.f ) s

b, F (s) + b,F,(s), where b, and b, are arbitrary
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The Laplace transform of the derivative df/dt of a function f(t) whose Laplace trans
form is F(s) is
L [df/dt] sF(s) — f(07)

where f(0*) is the initial value of f(¢), evaluated as the one-sided limit of f(f) as ¢
approaches zero from positive values.

The Laplace transform of the integral j f()dr of a function f(f) whose Laplac

transform is F( ) is
o[ f ] =

The initial value f(0*) of the function f(t) whose Laplace transform is F(s) is
f(0%) ltnré f(t) lim s F'(s) t >0

F(s)

This relation is called the Initial Value Theorem.

The final value f() of the function f(t) whose Laplace transform is F(s) is
iz lim f(t) lim s F'(s) |
=0 = Iﬂ

This relation is called the Final Value Theorem.

if lim f(f) exists.

t=r 0

The Laplace transform of a function f(t/a) (Time Scaling) is i

t/ F
where F(s) = £ [f(t)] el - S |

The inverse Laplace transform of the function F(s/a) (Frequency Scaling) is |

£~ [Flefa)) = aflat) |
HFE) = 1) |

where £~

The Laplace transform of the function f(t—T) (Time Delay) where T >0 mv &

f&—T) =0 for t=T, is

L[fE=T)] = e *TF(s)

where F(s) = L [f(t)]-

The Laplace transform of the function e~ f(t) is given by
L[e~* f(t)] F(s +a)

(Complex Translation)

where F(s) = £ [f(t)].

The Laplace transform of the product of two functions f,(t) and f,(t) is given by dﬁ
complex convolution integral
7).

Fl((u) Fz(S & a)) do

g — ey

L[f, (@) 1,(0)]
where F (s) = L[f,(})], F,(s) = L [f,(®)]-

and F_,é

The inverse Laplace transform of the product of the two transforms F(s)
is given by the convolution integrals
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where L71[F ()] = [, (%), L£L7'[F,(s)] = f,(2).

Bmsmple 4.3.
The Laplace transforms of the functions e~t and e~2t are .L[e~t] = L el lesidtle— -1—. Then
iy Property 1, s+1 s+2
3 1 2s +5
%e—t — g—2t] = 3 =] -2t — i =
£le = £l el skl si-l0e2 s2+3s+ 2
msmmple 4.4.
The inverse Laplace transforms of the functions L and . are
st 1 s+3
1 il
-1 = et =1 = -3t
- I:s ¥ 1] e < [s = 3} ¢
llbe=m. by Property 2,
& 2 4 1 1
e e = -1 L -1 = —t — fe—3t
< ’:s-l-l s+3:l 2 l:s-i—l:\ et [s+3] 2 .

inmmple 4.5.

The Laplace transform of %(e‘t) can be determined by application of Property 8. Since £ [emt]a—
~—— and lime t = 1, then

g t=0
dic e 1 =1
’C[E(e t)] - 3<s+1>_1 T os+1

t
The Laplace transform of f e~ Tdr can be determined by application of Property 4. Since
0

lesmple 4.6.

el
& o then .
=C f e—T d,r = .1_ 1 — .__1_.__
o s\s+1 s(s+1)
Dnmple 4.7. -
The Laplace transform of e=3t is £[e~3t] = wrar The initial value of e=3t can be determined
W ©ze Initial Value Theorem as lim e3¢ = lim s< 1 > =2l
t=0 s—+o0 s+ 3
Dmemple 4.8. :
The Laplace transform of the function (1 —e~t) is St The final value of this function can be
lpermined from the Final Value Theorem as lim (1—e~t) = lim oy
t=+00 s=0 S(S + 1)

llimmmple 4.9.

The Laplace transform of e—t is s-ll-l' The Laplace transform of e—3t can be determined by

: 1 1
e £ i i =1. —3t] = 1 =
spication of Property 7 (Time Scaling), where a =4: £ [e=3] i [(%s 1):| par

Bezmole 4.10.

The inverse transform of 5 i 1 is e~ t. The inverse transform of s -1 °an be determined by
3
Wgmiieztion of Property 8 (Frequency Scaling): .1 [1314- 1] = 8¢~ 3t
3

izmmple 4.11.

The Laplace transform of the function et is = _|1_ 1 The Laplace transform of the function defined as

e—(t—2) ‘t> 9
iy =
0 t=2

e—2s
gt il
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Example 4.12. ; .
The Laplace transform of cost is —8-2':_—1. The Laplace transform of e~2tcost can be determinsf Sy

from Property 10 with a =2: L[e 2t cost] = v _f ;;22+ e _T_ZSZ_‘_ 5 - S

i

Example 4.13. .

i
The Laplace transform of the product e~2tcost can be determined by application of Property 118 “m“"‘]i
: i 5 1 s i
(Complex Convolution). That is, since £[e™2%] = e and [ [cost] = pr then g T
1 c+joo “ i1 S 2 ;‘
=21 — e = e e 2
Lle ool 27Tj£~jw R B s 2+ 4s+5
S
The details of this contour integration are not carried out here because they are too complicated (se= & -
for example, Reference [5]) and unnecessary. The Laplace transform of e~2fcost was very simply &
determined in Example 4.12 using Property 10. There are, however, many instances in more advancs: |
treatments of automatic control in which complex convolution can be used effectively. *
S
Example 4.14.
; : 15 s ; .
The inverse Laplace transform of the function F(s) = ———_(s+ (21 1) can be determined by apph |
1 s ! i
oy 3 -1 —_ —t = e =
cation of Property 12. Since <L [ T 1:\ e and L [82 o 1] cost, then L

5 - : i
5 .

sl (e = Cxa L dr = e‘tf Tcosrdr = JX(cost+sint— et

. [(S + 1><32 + 1>} f + se el ot red 3 & ! e

0

45 SHORT TABLE OF LAPLACE TRANSFORMS Q i

The following is a short table of Laplace transforms. It is not complete, but whes
used in conjunction with the properties of the Laplace transform described in Section 44
and the partial fraction expansion techniques described in Section 4.7, it is adequate 8
handle all of the problems in this book. A more complete table of Laplace transform pairs .
is found in the Appendix. ‘

TABLE 4.1 ‘
X 8 M
Time Function Laplace Transform
Unit Impulse 3(t) 1
Unit Step u(t) 1/s
Unit Ramp t 1/s2
Wi 2
Polynomial tn nl/gnt1 ‘ ﬂ;%
Exponential e—at : gl ; ' Th
s+ a -
? ; © .
Sine Wave sin wt sy {
i
5 8 4
Cosine Wave cos ot Fe
Damped Sine Wave e~ % sin wt —— e
(s+a)2+ o i' W o
; sta i
Damped Cosine Wave e~ % cos wt oo ;
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Appendix

SOME LAPLACE TRANSFORM PAIRS USEFUL

FOR CONTROL SYSTEMS ANALYSIS

i f(t) t>0
5 () unit impulse
it 8(t—1T) delayed impulse
—i1~ a e—at
s
1 o .
(s+a)n __(n—l)!t" 1e a.t e O E R
- i —at — g—bt
(s +a)(s+ b) e e~bt)

SR Chd i
(8 + a)(s + b)

(a:e—at — be—bt)

a—b>b
(s +sa;sz+ b) o [~ d)emito (= ble— ]
1 e—at e—bt . e—ct
(s+a)(s +b)(s +¢) (b—a)lc—a) (c—b)a—Db) (a—c)(b—o)
stz (z—a)e—at (z—b)e—bt (z— c)e—ct
(s + a)(s+ b)(s+ ¢) (b—-a)(c—-a) (c—Db)(a—1D) (a—c)(b —¢)
g2 _:_’ w2 sin wt
: cos wt
s2 + @2
2 2
s E P imtte) ¢ = tant (o/2)
w
s sing + w cos ¢ i
ST sin (at + ¢)
. le“at sin ot
(s +a) + w2 o
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APPENDIX

F(s)

f(t) t>0

1
82 + 20w,8 + o

1]

w, V1 —¢2

] e .
—e~tnt gin w,t wg
wg

s+ a
(s+a)2 + o2

e~ at cos wt

Beid eiisd
(s+a)2 + o2

R
(e alt o a)2+°’ €=t gin (ot + ¢) ¢ = tan-1< 9 >

w z2—a

|

@ | -t

u(t) or 1 unit step

u(t—1T) delayed step

l (]_ e e—Ts)
8

w(t) — u(t—7T) rectangular pulse

o
s(s+ a)

Lo 1
Rl

1
s(s+a)(s + b)

] be—at  ge—bt
atb<1 b-—a+b~a> | 2.

8+ =z
s(s + a)(s + b)

ab b—a +

1 < b(z — a)e—at
sl
b—a

a(z — b)e—bt> i

o i
8(82 -+ mz)

% (1 — cos wt)

sk =
5(82 + w2)

z 22 + 2
w2 wt

cos (ot + ¢) ¢ = tan—1(w/z)

1
(82 + 2tw,8 + w2)

1 1

w2 ©p0g

e~ tont sin (wgt + )

S
8(s + a)2

% (1 —e—at — gte—at)

stz
8(s + a)2 .

&1—2 [z — zeat + q(a — 2)te—at]

t unit ramp 9.

% (at —1+ e—at)

tn—1

@=nr . Y1

; ‘: 4.

wg = w,\/1—¢2 ¢ = cos~1¢ ‘ 6.
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B.2 TABLE OF -TRANSFORMS

F(s) is the Laplace transform of f(t) and F(2) is the z-transform of f(nT). Unless otherwise noted, f(t) =
0, t < 0 and the region of convergence of F(z) is outside a circle r < | 2| such that all poles of F(z) are inside

T.
Table B.2
Number F(s) f(nT) F(z)
1 = 1, n=0;0n#0
2 — Ln=k On#k —k
3 : 1(nT) :
sl " z —Tl
z
4 = T -1 W
s2 " (z—1)2
1 1 " T? 2(z+ 1)
’ s E(nT) 2 (z—1)3
1 1 3 T3 2(2%2 +4z+1)
’ st g;(nT) 6 (z—1)*
1 . (_1)m—1 am—l p—— . (_l)m—l am—l z
! o i o — 1)1 Bam i = 1) dam—1 7 — eoT
! 2
8 —anT
s+a € 2 — e—aTT
1 Tze™®
9 T —anT
(s+a)? nie (22_ e—aT)2 i
a
10 G +1a)3 % (nT)%e—onT T? oT i(z te aT)g
z—e
11 : Gl A (-pmtomt .
(s+a)m (m —1)! da™1 (m —1)! 5an;;1 5 _ e-al
a —anT 2(1—e™°
12 — 1— g S
Number F(s) F(nT) Flo)
a 1 —
9 21a) ~(anT — 14 ¢7orT) A@T —1+e M)z + (1—eF —aTe"T)]
b—a a(z —1)2(z — e—aT)
8 GraEyy ®© e (=T — ")z
i S ) (Z - 6_0‘7;2(2: _ e__bT)»
15 (S + a)2 (1 - anT)e‘a"T Z[Z —( e ¢ (1T+ aT)]
2 z—e"a )2
a i
16 m 1—e-onT(] 4 anT) z[z(1 —e7oT — aTe T 4 ¢=2aT _ g—aT | aTe=oT]
b— (z=1)(z — e—oT)2
a (2 — e78T)(z — e~bT)
18 P+ a sinanT zsinaT
g 22 —(2cosaT)z + 1
19 a2 L al cosanT z(z — cosaT)
§ by 22— (2cosaT)z + 1
20 (s+a)Z+02 e~ TcosbnT z(z — e TcosbT)
b 2% — 2e=9T (cos bT )z + e—2aT
21 (5+a)2+b? e~ T'sin bnT ze”Tsin bT
a? + b2 22 — 2T (cos bT)z + e—2T
22 z(Az + B)

1—e-onT (cos bnT + % sin bnT)

(2 —1)(2% — 2e=2T (cos bT' )z + e—2aT)
A=1-e"TcoshT — %e‘aTsian




