

Perbaikan Paper 1

Sebelum

Model Artificial Neural Network (ANN) dan Multi-Layer Perceptron (MLP) untuk Prediksi Penyebaran Kasus Tuberkulosis

Sesudah

Model Artificial Neural Network (ANN) dan Multi-Layer Perceptron (MLP) untuk **Prakiraan** Sebaran Kasus Tuberkulosis

Sebelum

Tabel 1. Statistik deskriptif perbandingan data training dengan data testing

Variabel	N		Max		Min		Mean		Var	
	Training	Testing								
Υ	3,861	1,287	44.000	27.000	0.000	0.000	2.776	2.655	13.852	12.489
X1	3,861	1,287	5.064	5.064	-0.922	-0.922	-0.005	0.016	0.975	1.076
X2	3,861	1,287	10.940	10.940	0.050	0.050	1.284	1.304	4.120	4.391
Total	5148									

Sesudah

Tabel 1. Statistik deskriptif perbandingan data training dengan data testing

Variabel	N		Max		Min		Mean		Var	
	Training	Testing	Training	Testing	Training	Testing	Training	Testing	Training	Testing
Υ	3,432	1,715	44.000	44.000	0.000	0.000	2.714	2.721	13.936	14.089
X1	3,432	1,715	61039	61039	973	973	10405	10412	103302682	103440699
X2	3,432	1,715	10.940	10.940	0.050	0.050	1.284	1.29	4.187	4.190
Х3	3,432	1,715	12	12	1	1	6.5	6.5	13	13
X4	3,432	1,715	2018	2019	2017	2019	2019	2018	0.250	0.250
Total	514	48								

X3: bulan, X4: Tahun

Sebelum

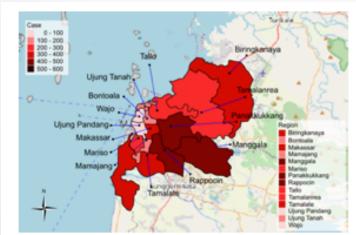
Data jumlah kasus 2017 - 2019

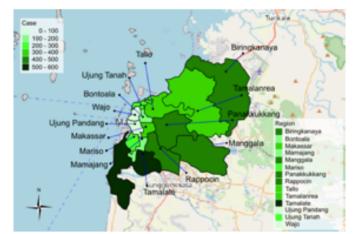
Gambar 10 peta jumlah kasus TB tahun 2017

Gambar 11 peta jumlah kasus TB tahun 2018

Gambar 12 peta jumlah kasus TB tahun 2019

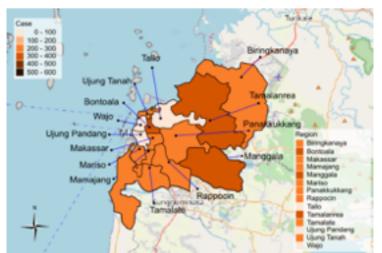
Peta Prediksi Penyebaran 2020-2021


Gambar 14 peta jumlah kasus TB tahun 2020


Gambar 15 peta jumlah kasus TB tahun 2021

Sesudah

Data jumlah kasus 2017 - 2018



Gambar 10 peta jumlah kasus TB tahun 2017

Gambar 11 peta jumlah kasus TB tauhn 2018

Peta Peramalan Penyebaran 2019

Gambar 14 peta jumlah kasus TB tahun 2019

Conclusion: Sebelum

Model ANN adalah model terbaik untuk memprediksi penyebaran kasus *tuberkulosis* (TB) di kota Makassar dengan tingkat akurasi adalah 97.59% dibandingkan model MLP dengan tingkat akurasi yang diperoleh adalah 77.62%. Model ANN memperoleh hasil bahwa penyebaran kasus TB dipengaruhi oleh jumlah penduduk dan luas suatu daerah, sehingga perlu tindakan kusus untuk daerah yang memiliki jumlah penduduk tertinggi di kota Makassar untuk mencegah peningkatan jumlah kasus TB di kota Makassar. Dalam penelitian ini, hanya menggunakan dua variable bebas yaitu jumlah penduduk dan luas daerah serta variable terikatnya jumlah kasus TB. Untuk penelitian berikutnya prediksi jumlah kasus TB dengan memperhatikan krakteristik penduduk pada daerah tersebut

Conclusion: Sesudah

Model ANN adalah model terbaik untuk memprediksi penyebaran kasus *tuberkulosis* (TB) di kota Makassar dengan tingkat akurasi adalah 82.48% dibandingkan model MLP dengan tingkat akurasi yang diperoleh adalah 73.99%. Model ANN memperoleh hasil bahwa penyebaran kasus TB dipengaruhi oleh bulan, tahun, jumlah penduduk dan luas suatu daerah, sehingga perlu tindakan kusus untuk daerah yang memiliki jumlah penduduk tertinggi di kota Makassar untuk mencegah peningkatan jumlah kasus TB di kota Makassar. Dalam penelitian ini, menggunakan empat variable bebas yaitu jumlah penduduk, luas daerah, bulan dan tahun serta variable terikatnya jumlah kasus TB. Untuk penelitian berikutnya prediksi jumlah kasus TB dengan memperhatikan krakteristik penduduk pada daerah tersebut

