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Receiver operating characteristic (ROC) analysis is com-
monly used in clinical radiology research to express the
diagnostic accuracy of imaging examinations. Many ex-
cellent resources are available that cover the technical and
statistical aspects of ROC analysis (1–4). In this article, I
take a nonstatistical approach in explaining the definition,
interpretation, and construction of ROC curves, in hopes
of making them accessible to general readers of the radi-
ology literature and beginning clinical researchers. With
this information, the reader should be able to identify data
that are amenable to ROC analysis and have an intuitive
understanding of the process by which an ROC curve is
constructed from such data. Although ROC analysis is far
from being a new technique for assessing diagnostic med-
ical tests (5), advances continue to be made. Some of
these key advances will be cited, and perhaps these cita-
tions could form a basis for further reading.

DEFINING ROC ANALYSIS

In its conventional form, ROC analysis applies to a
particular, perhaps simplified, diagnostic situation. In this
situation, the diagnostician’s task is to correctly assign
one of exactly two classifications to a diagnostic case af-
ter observing a particular stimulus associated with the
case. In radiology, the two classifications are usually two
disease states, such as the presence or absence of a partic-
ular disease or pathophysiological process. The two states
could be simply labeled “normal” versus “abnormal,” or
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“positive” versus “negative.” In radiology, the stimulus is
the imaging exam. The observer’s task is to determine the
correct disease classification based on information ob-
tained from the imaging exam.

In ROC analysis, the observer’s classification of each
case is compared to its true classification according to an
appropriate reference standard. This comparison should be
familiar to all radiologists because it is the same compari-
son with which the familiar performance measures of sen-
sitivity and specificity are calculated. Sensitivity is simply
the proportion of correctly classified cases among all of
those that are truly positive, and specificity is the propor-
tion of correctly classified cases among all of those that
are truly negative.

In the real world of medical diagnosis, performing the
binary classification of each case is associated with uncer-
tainty, so that sensitivity and specificity are not both
100%. In the interpretation of diagnostic tests, there is
usually a trade-off between sensitivity and specificity
(Fig. 1a). This trade-off depends on the observer’s thresh-
old for calling an exam positive. An observer with a low
threshold (tendency to “over-call”) will have a high sensi-
tivity but relatively low specificity. In contrast, an ob-
server with a high threshold (tendency to “under-call”)
will have a low sensitivity but relatively high specificity.
The latter observer will miss more positive cases than the
former, but fewer negative cases will be mistakenly called
positive.

If a plot of sensitivity versus specificity (Fig. 1a) is
flipped horizontally, the result is an ROC curve (Fig. 1b).
The resulting flipped horizontal axis is the false positive
fraction, which is equal to the specificity subtracted from
1. Thus the ROC curve is simply a plot of the intuitive
trade-off between sensitivity and specificity, with the hor-
izontal axis flipped for historical reasons. The original
aim of ROC analysis was to focus on positive test results,

both true positive and false positive.
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The area under the ROC curve (often abbreviated
AUC) is commonly used as a global indicator of diagnos-
tic performance. It can be shown that the AUC is equal to
the probability that the observer will correctly identify the
positive case when presented with a randomly chosen pair
of cases in which one case is positive and one case is
negative (6). The AUC can also be interpreted as the av-
erage sensitivity over the entire range of possible specific-
ities, or the average specificity over the entire range of
possible sensitivities (1). If the combination of observer
and test were perfectly accurate, with 100% sensitivity
and 100% specificity, then the ROC curve would consist
of two straight line segments encompassing the entire unit
square, so the AUC would be 1 (Fig. 2). This curve
would be interpreted as the observer having a 100% prob-
ability of correctly classifying a random positive–negative
case pair. If the observer was completely inexperienced
and/or the test was completely indiscriminate, equivalent
to blind guessing, then the ROC curve would be a
straight line connecting the lower left to upper right cor-
ners, and the area under this curve would be 0.5 (Fig. 2).
This line corresponds to a 50% probability of the ob-

Figure 1. (a) Plot of a hypothetical relationship between the sen
tradeoff between sensitivity and specificity. (b) Plot of a hypothet
characteristic curve is merely a simple variation of the sensitivity
server correctly classifying a random positive–negative
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case pair, which is the same as flipping a coin and letting
random chance decide the correct classification.

In practice, the AUC can be thought of as representing
the “average accuracy” of a diagnostic test. If so, then
why bother with this area? Instead, why not simply use
the traditional measures of sensitivity, specificity, and
accuracy (proportion correct)? The ROC curve and the
area under it possess an important property that the other
measures do not. That property is independence from the
threshold the observer chooses when interpreting the diag-
nostic exam. The ROC curve in effect adjusts for the
variation in sensitivity and specificity (due to the trade-off
discussed earlier) that occurs when varying interpretation
thresholds exist within the same reader or among a group
of readers. Not only does the AUC represent an overall
accuracy measure, it also represents an accuracy measure
covering all possible interpretation thresholds.

CONSTRUCTING AN ROC CURVE

It is instructive to consider how ROC curves are con-
structed. A typical ROC study begins by asking an observer

ty and specificity of an imaging exam. There is typically a
eceiver operating characteristic curve. The receiver operating
s specificity plot.
sitivi
ical r
to interpret a number of cases, some of which are positive
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and some negative (true classification unknown to observer).
Instead of simply asking the observer to classify each case
as positive or negative, the observer is asked to rate each
case according to how strongly the observer believes the
case is positive (or negative). This rating is most commonly
done according to an ordinal scale (Fig. 3), such as 1 �
definitely negative, 2 � probably negative, 3 � possibly
negative, 4 � possibly positive, 5 � probably positive, and
6 � definitely positive. Alternatively, the observer identifies

Figure 2. Plot comparing the receiver operating characteristic
curves in the presence of perfect accuracy (solid line with area
under curve of 1) versus random guessing (dotted line with area
under curve of 0.5).

Figure 3. Two formats (A and B) for collecting data suitable for
receiver operating characteristic analysis.
each case as positive or negative and assigns a level of cer-
tainty for the positive/negative diagnosis (Fig. 3). The latter
method is a bit easier for the observer to understand and can
be converted to the 6-point scale in the first step of data
analysis. The observer’s responses are usually recorded on a
data form employing a rating scale similar to the ones
shown in Fig. 3.

After collecting the observer’s responses, the ratings
are tallied according to whether the case was truly posi-
tive or negative. Table 1 shows an example of results
from an observer interpreting a set of skeletal radiographs
to detect fractures. The sensitivity/specificity points for
the ROC curve are calculated by considering what would
happen if the exam were interpreted as positive using
each successive level of certainty on the ordinal scale as
the criterion threshold. Each sensitivity/specificity pair is
plotted, and the result is a type of ROC curve known as
the empirical ROC curve (Fig. 4a). For example, if we
consider the case to be positive only if the reader had a
confidence level of 4, then the sensitivity would be only
0.58, relatively low because there were many positive
cases with lower confidence ratings. On the other hand,
the specificity would be 0.92, relatively high because few
negative cases were associated with high confidence lev-
els. The points at each end of the curve represent extreme
situations in which all cases were considered positive
(point A in Table 1 and Fig. 4a) or all were considered
negative (point E in Table 1 and Fig. 4a).

The area under the empirical ROC curve, known as the
empirical AUC, can be simply calculated by adding up
the areas of the trapezoidal sections under each segment
of the curve (Fig. 4a), a method known as the trapezoidal
rule. Because the segments only approximate a smooth
ROC curve, the empirical AUC will slightly underesti-
mate the actual value for the area. However, this underes-
timation is usually negligible (7).

A potentially more accurate and visually pleasing ROC
curve can be obtained by fitting a smooth curve to the
individual sensitivity/specificity data points (Fig. 4b). As
with any curve-fitting procedure, one must assume an
underlying model for the fitted curve. For example, in
linear regression, the underlying model is that of a
straight line. In ROC analysis, the underlying model is
more complicated: the binormal model (1,4,7). The binor-
mal model hypothesizes that the observer’s ratings for the
cases form two normal distributions, one distribution for
the positive cases and one for the negative cases (Fig. 5).
Because of uncertainties and imperfections in the diagnos-

tic exam, the two distributions overlap.
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It is important to note that the fitted ROC curve is
based on an underlying model, and the curve’s smooth-
ness should not imply a higher degree of precision and
continuity than exists in the underlying data. Neverthe-
less, most ROC curves are published showing only their
fitted form. Therefore, editors and readers of the literature
should request that the individual data points be plotted
along with fitted ROC curves (Fig. 4b).

FITTING AND STATISTICAL ANALYSIS OF
ROC CURVES

The mathematical transformation of the binormal

Figure 4. (a) Receiver operating characteristic curve plotted from
fitted to the data in Table 1 using the binormal model.

Table 1
Tally of Observer Ratings From an Experiment in Detecting Fra

1

Number of truly positive cases 3
Number of truly negative cases 12

1 1
Threshold rating between negative

and positive Below 1 Between 1 a
Sensitivity at indicated threshold 1.00 0.88
Specificity at indicated threshold 0.00 0.50
Point in Fig. 4a A B
model into an ROC curve (1,4) is a topic that is beyond
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the introductory scope of this article. Even more compli-
cated are the numerous statistical methods that have been
developed—and continue to be developed—to fit an ROC
curved based on the binormal and other models. How-
ever, some appreciation for these statistical methods may
be obtained by considering the different situations in
which they are applied.

Up to this point, we have considered the simplest pos-
sible case: the ROC curve of one reader performing a
single task and rating his or her confidence according to
an ordinal scale. Despite its simplicity, this case corre-
sponds to one of the most common ways to calculate an
ROC curve, the ROCFIT program (8), which is an imple-

data in Table 1. (b) Smooth receiver operating characteristic curve

s From a Set of Skeletal Radiographs

Observer rating

2 3 4

1 6 14
7 3 2

1 1 1

Between 2 and 3 Between 3 and 4 Above 4
0.83 0.58 0.00
0.79 0.92 1.00

C D E
the
cture

nd 2
mentation of a popular maximum likelihood method (9).
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The results of many diagnostic tests, however, are ex-
pressed on a continuous numerical scale rather than a dis-
crete ordinal one. Examples include serum levels ex-
pressed as mg/dL or tests that yield a numerical probabil-
ity. An empirical ROC curve can still be constructed from
such continuous data, but ROCFIT cannot be used to fit a
smooth ROC curve because the program’s algorithm as-
sumes ordinal data. Two major approaches have been
developed to handle continuous data. First, the continuous
data can be grouped into a number of ordinal categories,
transforming the data into a form that can be analyzed by
the ROCFIT method (the LABROC program) (10). A
more recent approach recasts the ROC curve into a form
that can be directly fitted using generalized linear model-
ing (11). In the latter approach, ROC analysis is made
more tractable because generalized linear modeling, es-
sentially a generalized form of linear regression, is al-
ready an established and well-understood statistical
method.

For all ROC calculation methods, it is possible to com-
pare statistically two ROC curves, such as the ROC
curves associated with two different imaging modalities
(1–3,8,12). As with any statistical comparison method,
methods for comparing ROC curves rely on estimates of
the statistical variability (analogous to a standard devia-
tion) of the fitted curves. The difference between the fit-
ted curves is calculated, and this difference is compared
with the variability estimates to see if the difference is
statistically significant. Selection of an appropriate
method depends upon whether the same cases were used
for both ROC curves (with the curves differing by reader
or modality). If the same cases are used, some statistical
correlation will exist between the two curves. Accurate
comparison of the two curves must account for this corre-

Figure 5. The binormal model of the distribution of observer rat-
ings.
lation.
Thus, ROC analysis can handle the comparison of two
ROC curves, whether they are derived from two different
readers or two different modalities. What if the clinical
situation involves both multiple readers and multiple mo-
dalities? Analysis of this situation represents another jump
in statistical complexity. Several methods have been pro-
posed (13–18). The methods employ various strategies to
account for the complex statistical correlation that arises
when using a fixed set of observers to interpret a fixed
number of imaging modalities using a fixed set of cases.
The methods have differing statistical assumptions, and
when used to analyze the same data, the methods can
produce slightly different results (19,20).

An ultimate layer of complexity is to consider how
external factors, which statisticians call covariates, affect
the ROC curve. For example, one might want to know if
certain reader or patient characteristics affect the ROC
curve in addition to the main effect (eg, the imaging mo-
dality) being examined. You might also want to improve
the efficiency of an ROC study by adjusting for differ-
ences in the readers or patients that would otherwise in-
terfere with the results. A number of the methods for ana-
lyzing data from multiple readers and modalities can also
be used to analyze covariates (11,13–15).

A variety of computer programs are available for fit-
ting ROC curves and performing ROC analysis. These
programs are primarily intended for those with some sta-
tistical experience. Perhaps the most widely used pro-
grams are those in the ROCKIT package (containing
ROCFIT and LABROC) by Metz and colleagues for cal-
culating single ROC curves and certain comparisons of
two ROC curves (21). A web version of ROCFIT is
available (22). ROC curve fitting can also be performed
by a number of dedicated commercial programs (23) and
some standard statistical packages (Stata, version 8.0,
Stata Corp., College Station, TX). Software for more
complex situations, such as multiple readers with multiple
modalities (21,24) and the analysis of covariates (25), is
available.

CAVEATS AND OTHER ISSUES

While ROC analysis addresses the variance of sensitiv-
ity and specificity due to variance in interpretation thresh-
olds, it is still subject to some of the limitations affecting
studies of sensitivity and specificity. First, only binary
diagnostic states can be considered, such as the presence

or absence of a particular disease. Conventional ROC
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analysis cannot be applied to situations in which there are
more than two possible outcomes, such as a screening
procedure for abdominal pain, which could reveal one of
many possible conditions. Second, ROC analysis still re-
quires a reference standard that indicates the true state
(diagnosis) of each case. An imperfect reference standard
would introduce potential inaccuracy in the ROC analysis,
just as it would for the determination of sensitivity and
specificity. In the case of sensitivity and specificity, math-
ematical methods exist that adjust for an imperfect refer-
ence standard (2,3). In the case of ROC analysis, adjust-
ment methods are less well developed (3).

An imperfect reference standard is an important type
of bias, a term defined by epidemiologists as any devia-
tion of study results or inferences from the truth as a con-
sequence of how a study is designed or conducted (26).
As implied by this broad definition, clinical research is
potentially susceptible to countless types of bias. Studies
of diagnostic tests, such as those generating data for ROC
analysis, are particularly susceptible to certain types of
bias (27,28), such as an imperfect reference standard. An-
other potential source of bias in these studies is verifica-
tion bias, where the reference standard is not applied to
all participants undergoing the diagnostic test being exam-
ined. For example, the reference standard test may be
invasive or expensive so that there may be a tendency to
obtain it only in high-risk patients or those who have a
positive diagnostic screening test. As a result, the appar-
ent accuracy of the screening test may be distorted. Math-
ematical methods are available to adjust for verification
bias in certain situations (2,3).

If the ROC analysis is based on an ordinal rating scale,
care should be take to ensure the scale is truly ordinal
and represents a monotonic progression of disease suspi-
cion. For example, the 6 assessment categories (0 to 5)
of the Breast Imaging Reporting and Data System
(BI-RADS) (29) seem to be readily amenable to ROC
analysis. However, there is some controversy because
category 0 indicates a need for more information rather
than the level of confidence for malignancy. Categories 1
(negative) and 2 (benign finding) both indicate no mam-
mographic evidence for malignancy, which might be con-
sidered the same level of confidence for disease.

ROC curves derived from several readers of the same
cases are sometimes averaged to yield an ROC curve rep-
resenting the overall performance of the diagnostic exam
in question (Fig. 6) (30). A subtle, but important assump-
tion is sometimes made when this pooling is done. The

assumption is that all observers have the same underlying
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ROC curve and only differ from each other because of
variations in interpretation thresholds and random statisti-
cal variation. The pooling of ROC curves may not be
valid if one or more of the observers is better or worse
than the others in a nonrandom way. For example, one
could wonder if the rather large difference between the
readers in Fig. 6 were due to nonrandom factors such as
clinical skill or uncontrolled institutional differences.
Methods have been proposed to combine ROC data prop-
erly (31).

The AUC is the most commonly used index of perfor-
mance associated with ROC analysis, but it suffers from a
major limitation: It is a global indicator of diagnostic per-
formance representing the average performance over the
entire range of possible sensitivities and specificities. The
AUC may be insensitive to significant differences in per-
formance for isolated regions of the ROC curve because
two curves may differ in their shape but encompass the
same total area (7). Furthermore, not all regions of the
ROC curve have equal clinical importance. At the ends of
the ROC curve, for example, either the sensitivity or
specificity is nearly zero. It is unlikely that a diagnostic
test with a near-zero sensitivity or specificity would be

Figure 6. Receiver operating characteristic curves of several
representative readers in a multi-institutional study to detect
periprostatic invasion of prostate cancer with MR imaging (30).
The receiver operating characteristic curves from these and other
readers in the study were pooled and an area of 0.61 was re-
ported.
clinically useful. Clinically relevant sensitivities or speci-
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ficities are often somewhere away from the ends of the
ROC curve. Therefore, some investigators have proposed
using the area under part of the ROC curve, such as be-
tween two arbitrarily defined values of the false positive
fraction (along the horizontal axis) (32) or sensitivity
(along the vertical axis) (33). Methods for analyzing the
entire ROC curve have been extended to the statistical
analysis of the partial area (34). The choice of the appro-
priate range along the horizontal or vertical axis depends
on the clinical setting. In a clinical setting in which it is
important to “rule out” a disease (eg, a fatal disease if
untreated), a range of relatively high false positive frac-
tions—corresponding to high sensitivities—would be cho-
sen. In a clinical setting in which it is important to “rule
in” a disease (eg, a disease whose treatment has major
side effects), a range of relatively low false positive frac-
tions—equivalent to high specificities—would be chosen.
The range of false positive fractions can also be narrowed
to the extreme of selecting one particular value of false
positive fraction at which to compare the sensitivity be-
tween two ROC curves (2).

A situation for which conventional ROC analysis is
not well-equipped is when the diagnostic task involves
determining the location of the abnormality or disease in
addition to determining its presence. Obviously, this situa-
tion is a common one in medical imaging. The problem
arises because ROC analysis only allows the reader to
make a diagnosis that applies to the entire case rather
than a particular location within an image. As a result,
ROC analysis may overestimate the observer’s perfor-
mance because the observer is credited for all truly posi-
tive cases that the observer calls positive, even if the ob-
server identified the wrong part of the image as being
positive. Techniques to address this problem have been
proposed, most notably the localization ROC (LROC)
curve (8,35,36). In this approach, a correct interpretation
of a truly positive case requires the reader to detect the
abnormality and correctly describe its location on the im-
age. The equations describing the LROC curve are based
on the reader’s conventional ROC curve. LROC curves
are not common in the radiology literature, perhaps be-
cause software for performing this analysis is not widely
available and because statistical procedures for fitting
LROC curves are a relatively recent development (37).

Another situation not well handled by conventional
ROC analysis is when more than one occurrence of the
disease or abnormality can occur within an image (eg,
lung nodules in a chest radiograph). To handle this situa-

tion, free-response ROC (FROC) analysis has been pro-
posed (8,36,38). The vertical axis of a FROC curve is the
sensitivity over all truly positive locations in the case set
(where each case can contribute more than one truly posi-
tive location), and the horizontal axis is the average num-
ber of false positives per case (since each case can have
more than one location for which a diagnosis must be
specified). Like LROC analysis, FROC analysis is not
commonly found in the radiology literature. Software to
perform FROC analysis is not widely available. FROC
analysis also suffers from the problem of assuming all
possible locations of the multiple abnormalities to be in-
dependent of each other. This is unlikely to be true in
most clinical settings. For example, if a lung mass is
found in one location of the lung, it is more likely that
others will be present at other locations. Therefore, all
locations within the patient are statistically correlated, not
independent.

SUMMARY

In summary, the ROC curve has found many useful
applications in radiology. While the statistics and mathe-
matics behind ROC analysis can be complex, the ROC
curve is fundamentally just a plot of the trade-off between
sensitivity and specificity. In fact, many of the assump-
tions of ROC analysis (binary classification, reliance on a
reference standard) are the same as those necessary to
calculate sensitivity and specificity. An indication of an
observer’s degree of diagnostic certainty is the key addi-
tional data element that must be collected to calculate an
ROC curve. Ongoing developments in ROC analysis will
address more complex types of diagnostic situations and
will likely expand the applicability of ROC analysis.
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