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Modeling of XOR Phase Detector

Average value of pulses is extracted by loop filter
- Look at detector output over one cycle:

Equation:
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Relate Pulse Width to Phase Error

Two cases:

1

-1
e(t)

ref(t)

div(t)

W

1

-1
e(t)

ref(t)

div(t)

W

W =
Φref − Φdiv

π T/2

T/2 T/2

W = -  
Φref − Φdiv

π T/2

0 < Φref − Φdiv  < π−π < Φref − Φdiv  < 0



M.H. Perrott MIT OCW

Overall XOR Phase Detector Characteristic
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Frequency-Domain Model of XOR Phase Detector

Assume phase difference confined within 0 to π radians
- Phase detector characteristic looks like a constant gain 

element 

Corresponding frequency-domain model
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Recall Phase Detector Characteristic

To simplify modeling, we assumed that we always 
operated in a confined phase range (0 to π)
- Led to a simple PD model

Large perturbations knock us out of that confined 
phase range
- PD behavior varies depending on the phase range it 

happens to be in
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Cycle Slipping

Consider the case where there is a frequency offset 
between divider output and reference
- We know that phase difference will accumulate

Resulting ramp in phase causes PD characteristic to 
be swept across its different regions (cycle slipping)
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Impact of Cycle Slipping

Loop filter averages out phase detector output
Severe cycle slipping causes phase detector to 
alternate between regions very quickly
- Average value of XOR characteristic can be close to 

zero
- PLL frequency oscillates according to cycle slipping
- In severe cases, PLL will not re-lock

PLL has finite frequency lock-in range!
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Back to PLL Response Shown Previously

PLL output frequency indeed oscillates
- Eventually locks when frequency difference is small enough

- How do we extend the frequency lock-in range?
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Phase Frequency Detectors (PFD)
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Tristate PFD Characteristic

Calculate using similar approach as used for XOR 
phase detector

Note that phase error characteristic is asymmetric 
about zero phase
- Key attribute for enabling frequency detection
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PFD Enables PLL to Always Regain Frequency Lock

Asymmetric phase error characteristic allows positive 
frequency differences to be distinguished from 
negative frequency differences 
- Average value is now positive or negative according to 

sign of frequency offset
- PLL will always relock
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Linearized PLL Model With PFD Structures

Assume that when PLL in lock, phase variations are 
within the linear range of PFD
- Simulate impact of cycle slipping if desired (do not 

include its effect in model)
Same frequency-domain PLL model as before, but 
PFD gain depends on topology used
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Type I versus Type II PLL Implementations

Type I: one integrator in PLL open loop transfer 
function
- VCO adds on integrator
- Loop filter, H(f), has no integrators

Type II:  two integrators in PLL open loop transfer 
function
- Loop filter, H(f), has one integrator
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A Common Loop Filter for Type II PLL Implementation

Use a charge pump to create the integrator
- Current onto a capacitor forms integrator
- Add extra pole/zero using resistor and capacitor

Gain of loop filter can be adjusted according to the 
value of the charge pump current
Example:  lead/lag network
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Charge Pump Implementations

Switch currents in and out:
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Modeling of Loop Filter/Charge Pump

Charge pump is gain element
Loop filter forms transfer function

Example:  lead/lag network from previous slide
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PLL Design with Lead/Lag Filter

Overall PLL block diagram

Loop filter

Set open loop gain to achieve adequate phase margin
- Set fz lower than and fp higher than desired PLL bandwidth
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Impact of Parasitics When Lead/Lag Filter Used

We can again model impact of parasitics by including 
them in loop filter transfer function

Example:  include two parasitic poles with the lead/lag 
transfer function
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Negative Issues For Type II PLL Implementations

Parasitic pole/zero pair causes
- Peaking in the closed loop frequency response

A big issue for CDR systems, but not too bad for wireless
- Extended settling time due to parasitic “tail” response

Bad for wireless systems demanding fast settling time
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