Modeling of XOR Phase Detector

- Average value of pulses is extracted by loop filter
 - Look at detector output over one cycle:

Equation:

$$avg\{e(t)\} = -1 + 2\frac{W}{T/2}$$

Relate Pulse Width to Phase Error

Two cases:

Overall XOR Phase Detector Characteristic

M.H. Perrott

Frequency-Domain Model of XOR Phase Detector

- Assume phase difference confined within 0 to π radians
 - Phase detector characteristic looks like a constant gain element

Corresponding frequency-domain model

Recall Phase Detector Characteristic

- To simplify modeling, we assumed that we always operated in a confined phase range (0 to π)
 - Led to a simple PD model
- Large perturbations knock us out of that confined phase range
 - PD behavior varies depending on the phase range it happens to be in

Cycle Slipping

- Consider the case where there is a frequency offset between divider output and reference
 - We know that phase difference will accumulate

 Resulting ramp in phase causes PD characteristic to be swept across its different regions (cycle slipping)

Impact of Cycle Slipping

- Loop filter averages out phase detector output
- Severe cycle slipping causes phase detector to alternate between regions very quickly
 - Average value of XOR characteristic can be close to zero
 - PLL frequency oscillates according to cycle slipping
 - In severe cases, PLL will not re-lock
 - PLL has finite frequency lock-in range!

XOR DC characteristic

Back to PLL Response Shown Previously

- PLL output frequency indeed oscillates
 - Eventually locks when frequency difference is small enough

How do we extend the frequency lock-in range?

Phase Frequency Detectors (PFD)

Example: Tristate PFD

Tristate PFD Characteristic

Calculate using similar approach as used for XOR phase detector

- Note that phase error characteristic is asymmetric about zero phase
 - Key attribute for enabling frequency detection

PFD Enables PLL to Always Regain Frequency Lock

- Asymmetric phase error characteristic allows positive frequency differences to be distinguished from negative frequency differences
 - Average value is now positive or negative according to sign of frequency offset
 - PLL will always relock

Linearized PLL Model With PFD Structures

- Assume that when PLL in lock, phase variations are within the linear range of PFD
 - Simulate impact of cycle slipping if desired (do not include its effect in model)
- Same frequency-domain PLL model as before, but PFD gain depends on topology used

Type I versus Type II PLL Implementations

- Type I: one integrator in PLL open loop transfer function
 - VCO adds on integrator
 - Loop filter, H(f), has no integrators
- Type II: two integrators in PLL open loop transfer function
 - Loop filter, H(f), has one integrator

A Common Loop Filter for Type II PLL Implementation

- Use a charge pump to create the integrator
 - Current onto a capacitor forms integrator
 - Add extra pole/zero using resistor and capacitor
- Gain of loop filter can be adjusted according to the value of the charge pump current
- Example: lead/lag network

Charge Pump Implementations

Switch currents in and out:

Modeling of Loop Filter/Charge Pump

- Charge pump is gain element
- Loop filter forms transfer function

Example: lead/lag network from previous slide

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

$$C_{sum} = C_1 + C_2, \quad f_z = \frac{1}{2\pi R_1 C_2}, \quad f_p = \frac{C_1 + C_2}{2\pi R_1 C_1 C_2}$$

PLL Design with Lead/Lag Filter

Overall PLL block diagram

Loop filter

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

- Set open loop gain to achieve adequate phase margin
 - Set f_z lower than and f_p higher than desired PLL bandwidth

M.H. Perrott

Impact of Parasitics When Lead/Lag Filter Used

 We can again model impact of parasitics by including them in loop filter transfer function

Example: include two parasitic poles with the lead/lag transfer function

$$H(f) = \left(\frac{1}{sC_{sum}}\right) \frac{1 + jf/f_z}{1 + jf/f_p} \left(\frac{1}{1 + jf/f_{p2}}\right) \left(\frac{1}{1 + jf/f_{p3}}\right)$$

Negative Issues For Type II PLL Implementations

Step Responses for a Second Order G(f) implemented as a Bessel Filter

- Parasitic pole/zero pair causes
 - Peaking in the closed loop frequency response
 - A big issue for CDR systems, but not too bad for wireless
 - Extended settling time due to parasitic "tail" response
 - Bad for wireless systems demanding fast settling time